mirror of
https://github.com/cosmo-sims/MUSIC.git
synced 2024-09-08 04:23:44 +02:00
584 lines
16 KiB
C++
584 lines
16 KiB
C++
#include <vector>
|
|
/*
|
|
|
|
region_ellipsoid.cc - This file is part of MUSIC -
|
|
a code to generate multi-scale initial conditions
|
|
for cosmological simulations
|
|
|
|
Copyright (C) 2010-13 Oliver Hahn
|
|
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <cassert>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <cctype>
|
|
#include <algorithm>
|
|
#include <stdexcept>
|
|
|
|
#include <gsl/gsl_math.h>
|
|
#include <gsl/gsl_eigen.h>
|
|
|
|
|
|
#define music::elog.Print printf
|
|
#define music::ilog.Print printf
|
|
#define music::ulog.Print printf
|
|
|
|
|
|
/***** Math helper functions ******/
|
|
|
|
//! return square of argument
|
|
template <typename X>
|
|
inline X sqr( X x )
|
|
{ return x*x; }
|
|
|
|
//! Determinant of 3x3 matrix
|
|
inline double Determinant_3x3( const float *data )
|
|
{
|
|
float detS = data[0]*(data[4]*data[8]-data[7]*data[5])
|
|
- data[1]*(data[3]*data[8]-data[5]*data[6])
|
|
+ data[2]*(data[3]*data[7]-data[4]*data[6]);
|
|
|
|
return detS;
|
|
}
|
|
|
|
//! Inverse of 3x3 matrix
|
|
inline void Inverse_3x3( const float *data, float *m )
|
|
{
|
|
float invdet = 1.0f/Determinant_3x3( data );
|
|
|
|
m[0] = (data[4]*data[8]-data[7]*data[5])*invdet;
|
|
m[1] = -(data[1]*data[8]-data[2]*data[7])*invdet;
|
|
m[2] = (data[1]*data[5]-data[2]*data[4])*invdet;
|
|
m[3] = -(data[3]*data[8]-data[5]*data[6])*invdet;
|
|
m[4] = (data[0]*data[8]-data[2]*data[6])*invdet;
|
|
m[5] = -(data[0]*data[5]-data[2]*data[3])*invdet;
|
|
m[6] = (data[3]*data[7]-data[4]*data[6])*invdet;
|
|
m[7] = -(data[0]*data[7]-data[1]*data[6])*invdet;
|
|
m[8] = (data[0]*data[4]-data[1]*data[3])*invdet;
|
|
}
|
|
|
|
void Inverse_4x4( float *mat )
|
|
{
|
|
double tmp[12]; /* temp array for pairs */
|
|
double src[16]; /* array of transpose source matrix */
|
|
double det; /* determinant */
|
|
double dst[16];
|
|
|
|
/* transpose matrix */
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
src[i] = mat[i*4];
|
|
src[i + 4] = mat[i*4 + 1];
|
|
src[i + 8] = mat[i*4 + 2];
|
|
src[i + 12] = mat[i*4 + 3];
|
|
}
|
|
|
|
tmp[0] = src[10] * src[15];
|
|
tmp[1] = src[11] * src[14];
|
|
tmp[2] = src[9] * src[15];
|
|
tmp[3] = src[11] * src[13];
|
|
tmp[4] = src[9] * src[14];
|
|
tmp[5] = src[10] * src[13];
|
|
tmp[6] = src[8] * src[15];
|
|
tmp[7] = src[11] * src[12];
|
|
tmp[8] = src[8] * src[14];
|
|
tmp[9] = src[10] * src[12];
|
|
tmp[10] = src[8] * src[13];
|
|
tmp[11] = src[9] * src[12];
|
|
|
|
/* calculate first 8 elements (cofactors) */
|
|
dst[0] = tmp[0]*src[5] + tmp[3]*src[6] + tmp[4]*src[7];
|
|
dst[0] -= tmp[1]*src[5] + tmp[2]*src[6] + tmp[5]*src[7];
|
|
dst[1] = tmp[1]*src[4] + tmp[6]*src[6] + tmp[9]*src[7];
|
|
dst[1] -= tmp[0]*src[4] + tmp[7]*src[6] + tmp[8]*src[7];
|
|
dst[2] = tmp[2]*src[4] + tmp[7]*src[5] + tmp[10]*src[7];
|
|
dst[2] -= tmp[3]*src[4] + tmp[6]*src[5] + tmp[11]*src[7];
|
|
dst[3] = tmp[5]*src[4] + tmp[8]*src[5] + tmp[11]*src[6];
|
|
dst[3] -= tmp[4]*src[4] + tmp[9]*src[5] + tmp[10]*src[6];
|
|
dst[4] = tmp[1]*src[1] + tmp[2]*src[2] + tmp[5]*src[3];
|
|
dst[4] -= tmp[0]*src[1] + tmp[3]*src[2] + tmp[4]*src[3];
|
|
dst[5] = tmp[0]*src[0] + tmp[7]*src[2] + tmp[8]*src[3];
|
|
dst[5] -= tmp[1]*src[0] + tmp[6]*src[2] + tmp[9]*src[3];
|
|
dst[6] = tmp[3]*src[0] + tmp[6]*src[1] + tmp[11]*src[3];
|
|
dst[6] -= tmp[2]*src[0] + tmp[7]*src[1] + tmp[10]*src[3];
|
|
dst[7] = tmp[4]*src[0] + tmp[9]*src[1] + tmp[10]*src[2];
|
|
dst[7] -= tmp[5]*src[0] + tmp[8]*src[1] + tmp[11]*src[2];
|
|
|
|
/* calculate pairs for second 8 elements (cofactors) */
|
|
tmp[0] = src[2]*src[7];
|
|
tmp[1] = src[3]*src[6];
|
|
tmp[2] = src[1]*src[7];
|
|
tmp[3] = src[3]*src[5];
|
|
tmp[4] = src[1]*src[6];
|
|
tmp[5] = src[2]*src[5];
|
|
tmp[6] = src[0]*src[7];
|
|
tmp[7] = src[3]*src[4];
|
|
tmp[8] = src[0]*src[6];
|
|
tmp[9] = src[2]*src[4];
|
|
tmp[10] = src[0]*src[5];
|
|
tmp[11] = src[1]*src[4];
|
|
|
|
/* calculate second 8 elements (cofactors) */
|
|
dst[8] = tmp[0]*src[13] + tmp[3]*src[14] + tmp[4]*src[15];
|
|
dst[8] -= tmp[1]*src[13] + tmp[2]*src[14] + tmp[5]*src[15];
|
|
dst[9] = tmp[1]*src[12] + tmp[6]*src[14] + tmp[9]*src[15];
|
|
dst[9] -= tmp[0]*src[12] + tmp[7]*src[14] + tmp[8]*src[15];
|
|
dst[10] = tmp[2]*src[12] + tmp[7]*src[13] + tmp[10]*src[15];
|
|
dst[10]-= tmp[3]*src[12] + tmp[6]*src[13] + tmp[11]*src[15];
|
|
dst[11] = tmp[5]*src[12] + tmp[8]*src[13] + tmp[11]*src[14];
|
|
dst[11]-= tmp[4]*src[12] + tmp[9]*src[13] + tmp[10]*src[14];
|
|
dst[12] = tmp[2]*src[10] + tmp[5]*src[11] + tmp[1]*src[9];
|
|
dst[12]-= tmp[4]*src[11] + tmp[0]*src[9] + tmp[3]*src[10];
|
|
dst[13] = tmp[8]*src[11] + tmp[0]*src[8] + tmp[7]*src[10];
|
|
dst[13]-= tmp[6]*src[10] + tmp[9]*src[11] + tmp[1]*src[8];
|
|
dst[14] = tmp[6]*src[9] + tmp[11]*src[11] + tmp[3]*src[8];
|
|
dst[14]-= tmp[10]*src[11] + tmp[2]*src[8] + tmp[7]*src[9];
|
|
dst[15] = tmp[10]*src[10] + tmp[4]*src[8] + tmp[9]*src[9];
|
|
dst[15]-= tmp[8]*src[9] + tmp[11]*src[10] + tmp[5]*src[8];
|
|
|
|
/* calculate determinant */
|
|
det=src[0]*dst[0]+src[1]*dst[1]+src[2]*dst[2]+src[3]*dst[3];
|
|
|
|
/* calculate matrix inverse */
|
|
det = 1/det;
|
|
for (int j = 0; j < 16; j++)
|
|
{ dst[j] *= det;
|
|
mat[j] = dst[j];
|
|
}
|
|
|
|
}
|
|
|
|
/***** Minimum Volume Bounding Ellipsoid Implementation ******/
|
|
/*
|
|
* Finds the minimum volume enclosing ellipsoid (MVEE) of a set of data
|
|
* points stored in matrix P. The following optimization problem is solved:
|
|
*
|
|
* minimize log(det(A))
|
|
* s.t. (P_i - c)'*A*(P_i - c)<= 1
|
|
*
|
|
* in variables A and c, where P_i is the i-th column of the matrix P.
|
|
* The solver is based on Khachiyan Algorithm, and the final solution is
|
|
* different from the optimal value by the pre-specified amount of 'tolerance'.
|
|
*
|
|
* The ellipsoid equation is given in the canonical form
|
|
* (x-c)' A (x-c) <= 1
|
|
*
|
|
* Code was adapted from the MATLAB version by Nima Moshtagh (nima@seas.upenn.edu)
|
|
*/
|
|
class min_ellipsoid
|
|
{
|
|
protected:
|
|
size_t N;
|
|
float X[16];
|
|
float c[3];
|
|
float A[9], Ainv[9];
|
|
float *Q;
|
|
float *u;
|
|
|
|
float detA, detA13;
|
|
|
|
float v1[3],v2[3],v3[3],r1,r2,r3;
|
|
|
|
float V[9], mu[3];
|
|
|
|
bool axes_computed, hold_point_data;
|
|
|
|
void compute_axes( void )
|
|
{
|
|
gsl_vector *eval;
|
|
gsl_matrix *evec;
|
|
gsl_eigen_symmv_workspace *w;
|
|
|
|
eval = gsl_vector_alloc(3);
|
|
evec = gsl_matrix_alloc(3, 3);
|
|
|
|
w = gsl_eigen_symmv_alloc(3);
|
|
|
|
// promote to double, GSL wants double
|
|
double dA[9];
|
|
for( int i=0; i<9; ++i ) dA[i] = (double)A[i];
|
|
|
|
gsl_matrix_view m = gsl_matrix_view_array( dA, 3, 3);
|
|
gsl_eigen_symmv( &m.matrix, eval, evec, w);
|
|
|
|
gsl_eigen_symmv_sort( eval, evec, GSL_EIGEN_SORT_VAL_ASC);
|
|
|
|
gsl_vector_view evec_i;
|
|
|
|
for( int i=0; i<3; ++i )
|
|
{
|
|
mu[i] = gsl_vector_get(eval, i);
|
|
evec_i = gsl_matrix_column (evec, i);
|
|
for( int j=0; j<3; ++j )
|
|
V[3*i+j] = gsl_vector_get(&evec_i.vector,j);
|
|
}
|
|
|
|
r1 = 1.0 / sqrt( gsl_vector_get(eval, 0) );
|
|
r2 = 1.0 / sqrt( gsl_vector_get(eval, 1) );
|
|
r3 = 1.0 / sqrt( gsl_vector_get(eval, 2) );
|
|
|
|
evec_i = gsl_matrix_column (evec, 0);
|
|
v1[0] = gsl_vector_get(&evec_i.vector,0);
|
|
v1[1] = gsl_vector_get(&evec_i.vector,1);
|
|
v1[2] = gsl_vector_get(&evec_i.vector,2);
|
|
|
|
evec_i = gsl_matrix_column (evec, 1);
|
|
v2[0] = gsl_vector_get(&evec_i.vector,0);
|
|
v2[1] = gsl_vector_get(&evec_i.vector,1);
|
|
v2[2] = gsl_vector_get(&evec_i.vector,2);
|
|
|
|
evec_i = gsl_matrix_column (evec, 2);
|
|
v3[0] = gsl_vector_get(&evec_i.vector,0);
|
|
v3[1] = gsl_vector_get(&evec_i.vector,1);
|
|
v3[2] = gsl_vector_get(&evec_i.vector,2);
|
|
|
|
gsl_vector_free(eval);
|
|
gsl_matrix_free(evec);
|
|
gsl_eigen_symmv_free (w);
|
|
|
|
axes_computed = true;
|
|
}
|
|
|
|
// use the Khachiyan Algorithm to find the minimum bounding ellipsoid
|
|
void compute( double tol = 0.001, int maxit = 10000 )
|
|
{
|
|
double err = 10.0 * tol;
|
|
float *unew = new float[N];
|
|
int count = 0;
|
|
double temp;
|
|
|
|
while( err > tol && count < maxit )
|
|
{
|
|
for( int i=0; i<4; ++i )
|
|
for( int j=0,i4=4*i; j<4; ++j )
|
|
{
|
|
const int k = i4+j;
|
|
temp = 0.0;
|
|
for( size_t l=0; l<N; ++l )
|
|
temp += (double)(Q[4*l+i] * u[l] * Q[4*l+j]);
|
|
X[k] = temp;
|
|
}
|
|
|
|
Inverse_4x4(X);
|
|
|
|
int imax = 0; float Mmax = -1e30;
|
|
double m;
|
|
for( size_t i=0; i<N; ++i )
|
|
{
|
|
m = 0.0;
|
|
for( int k=0; k<4; ++k )
|
|
for( int l=0; l<4; ++l )
|
|
m += (double)(Q[4*i+k] * X[4*l+k] * Q[4*i+l]);
|
|
if( m > Mmax )
|
|
{
|
|
imax = i;
|
|
Mmax = m;
|
|
}
|
|
}
|
|
|
|
float step_size = (Mmax-4.0f)/(4.0f*(Mmax-1.0f)), step_size1 = 1.0f-step_size;
|
|
for( size_t i=0; i<N; ++i )
|
|
unew[i] = u[i] * step_size1;
|
|
unew[imax] += step_size;
|
|
|
|
err = 0.0;
|
|
for( size_t i=0; i<N; ++i )
|
|
{
|
|
err += sqr(unew[i]-u[i]);
|
|
u[i] = unew[i];
|
|
}
|
|
err = sqrt(err);
|
|
++count;
|
|
}
|
|
|
|
if( count >= maxit )
|
|
music::elog.Print("No convergence in min_ellipsoid::compute: maximum number of iterations reached!");
|
|
|
|
delete[] unew;
|
|
}
|
|
|
|
public:
|
|
min_ellipsoid( size_t N_, double* P )
|
|
: N( N_ ), axes_computed( false ), hold_point_data( true )
|
|
{
|
|
// --- initialize ---
|
|
music::ilog.Print("computing minimum bounding ellipsoid from %lld points",N);
|
|
|
|
Q = new float[4*N];
|
|
u = new float[N];
|
|
|
|
for( size_t i=0; i<N; ++i )
|
|
u[i] = 1.0/N;
|
|
|
|
for( size_t i=0; i<N; ++i )
|
|
{
|
|
int i4=4*i, i3=3*i;
|
|
for( size_t j=0; j<3; ++j )
|
|
Q[i4+j] = P[i3+j];
|
|
Q[i4+3] = 1.0f;
|
|
}
|
|
|
|
//--- compute the actual ellipsoid using the Khachiyan Algorithm ---
|
|
compute();
|
|
|
|
//--- determine the ellipsoid A matrix ---
|
|
double Pu[3];
|
|
for( int j=0; j<3; ++j )
|
|
{
|
|
Pu[j] = 0.0;
|
|
for( size_t i=0; i<N; ++i )
|
|
Pu[j] += P[3*i+j] * u[i];
|
|
}
|
|
|
|
// determine center
|
|
c[0] = Pu[0]; c[1] = Pu[1]; c[2] = Pu[2];
|
|
|
|
// need to do summation in double precision due to
|
|
// possible catastrophic cancellation issues when
|
|
// using many input points
|
|
double Atmp[9];
|
|
for( int i=0; i<3; ++i )
|
|
for( int j=0,i3=3*i; j<3; ++j )
|
|
{
|
|
const int k = i3+j;
|
|
Atmp[k] = 0.0;
|
|
for( size_t l=0; l<N; ++l )
|
|
Atmp[k] += P[3*l+i] * u[l] * P[3*l+j];
|
|
Atmp[k] -= Pu[i]*Pu[j];
|
|
}
|
|
|
|
for( int i=0;i<9;++i)
|
|
Ainv[i] = Atmp[i];
|
|
|
|
Inverse_3x3( Ainv, A );
|
|
for( size_t i=0; i<9; ++i ){ A[i] /= 3.0; Ainv[i] *= 3.0; }
|
|
|
|
detA = Determinant_3x3( A );
|
|
detA13 = pow( detA, 1.0/3.0 );
|
|
}
|
|
|
|
min_ellipsoid( const double* A_, const double *c_ )
|
|
: N( 0 ), axes_computed( false ), hold_point_data( false )
|
|
{
|
|
for( int i=0; i<9; ++i )
|
|
{ A[i] = A_[i]; Ainv[i] = 0.0; }
|
|
for( int i=0; i<3; ++i )
|
|
c[i] = c_[i];
|
|
}
|
|
|
|
min_ellipsoid( const min_ellipsoid& e )
|
|
: N( 0 ), hold_point_data( false )
|
|
{
|
|
for( int i=0; i<16; ++i )
|
|
X[i] = e.X[i];
|
|
|
|
for( int i=0; i<3; ++i )
|
|
{
|
|
c[i] = e.c[i];
|
|
v1[i] = e.v1[i];
|
|
v2[i] = e.v2[i];
|
|
v3[i] = e.v3[i];
|
|
mu[i] = e.mu[i];
|
|
}
|
|
|
|
for( int i=0; i<9; ++i )
|
|
{
|
|
A[i] = e.A[i];
|
|
Ainv[i] = e.Ainv[i];
|
|
V[i] = e.V[i];
|
|
}
|
|
|
|
N = e.N;
|
|
detA = e.detA;
|
|
detA13 = e.detA13;
|
|
axes_computed = e.axes_computed;
|
|
}
|
|
|
|
~min_ellipsoid()
|
|
{
|
|
if( hold_point_data )
|
|
{
|
|
delete[] u;
|
|
delete[] Q;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
bool check_point( const T *x, double dist = 0.0 )
|
|
{
|
|
dist = (dist + 1.0) * detA13;
|
|
|
|
T q[3] = {x[0]-c[0],x[1]-c[1],x[2]-c[2]};
|
|
|
|
T r = 0.0;
|
|
for( int i=0; i<3; ++i )
|
|
for( int j=0; j<3; ++j )
|
|
r += q[i]*A[3*j+i]*q[j];
|
|
|
|
return r <= 1.0;
|
|
}
|
|
|
|
void print( void )
|
|
{
|
|
std::cout << "A = \n";
|
|
for( int i=0; i<9; ++i )
|
|
{
|
|
if( i%3==0 ) std::cout << std::endl;
|
|
std::cout << A[i] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
std::cout << "Ainv = \n";
|
|
for( int i=0; i<9; ++i )
|
|
{
|
|
if( i%3==0 ) std::cout << std::endl;
|
|
std::cout << Ainv[i] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
std::cout << "c = (" << c[0] << ", " << c[1] << ", " << c[2] << ")\n";
|
|
}
|
|
|
|
template<typename T>
|
|
void get_AABB( T *left, T *right )
|
|
{
|
|
for( int i=0; i<3; ++i )
|
|
{
|
|
left[i] = c[i] - sqrt(Ainv[3*i+i]);
|
|
right[i] = c[i] + sqrt(Ainv[3*i+i]);
|
|
}
|
|
}
|
|
|
|
void get_center( float* xc )
|
|
{
|
|
for( int i=0; i<3; ++i ) xc[i] = c[i];
|
|
}
|
|
|
|
void get_matrix( float* AA )
|
|
{
|
|
for( int i=0; i<9; ++i ) AA[i] = A[i];
|
|
}
|
|
|
|
double sgn( double x )
|
|
{
|
|
if( x < 0.0 ) return -1.0;
|
|
return 1.0;
|
|
}
|
|
|
|
void expand_ellipsoid( float dr )
|
|
{
|
|
if( !axes_computed )
|
|
{
|
|
music::ulog.Print("computing ellipsoid axes.....");
|
|
compute_axes();
|
|
}
|
|
float muold[3] = {mu[0],mu[1],mu[2]};
|
|
float munew[3];
|
|
for( int i=0; i<3; ++i )
|
|
munew[i] = sgn(mu[i])/sqr(1.0/sqrt(fabs(mu[i]))+dr);
|
|
|
|
|
|
float Anew[9];
|
|
for(int i=0; i<3; ++i )
|
|
for( int j=0; j<3; ++j )
|
|
{
|
|
Anew[3*i+j] = 0.0;
|
|
for( int k=0; k<3; ++k )
|
|
Anew[3*i+j] += V[3*k+i] * munew[k] * V[3*k+j];
|
|
}
|
|
|
|
for( int i=0; i<9; ++i )
|
|
A[i] = Anew[i];
|
|
|
|
Inverse_3x3( A, Ainv );
|
|
|
|
//music::ulog.Print("computing ellipsoid axes.....");
|
|
compute_axes();
|
|
|
|
//print();
|
|
}
|
|
};
|
|
|
|
|
|
#include "point_file_reader.hh"
|
|
|
|
void apply_shift( size_t Np, double *p, int *shift, int levelmin )
|
|
{
|
|
double dx = 1.0/(1<<levelmin);
|
|
printf("unapplying shift of previous zoom region to region particles :\n" \
|
|
"\t [%d,%d,%d] = (%f,%f,%f)",shift[0],shift[1],shift[2],shift[0]*dx,shift[1]*dx,shift[2]*dx);
|
|
|
|
for( size_t i=0,i3=0; i<Np; i++,i3+=3 )
|
|
for( size_t j=0; j<3; ++j )
|
|
p[i3+j] = p[i3+j]-shift[j]*dx;
|
|
}
|
|
|
|
int main( int argc, char **argv )
|
|
{
|
|
std::vector<double> pp;
|
|
int shift[3];
|
|
unsigned shift_level = 0;
|
|
min_ellipsoid* pellip = 0;
|
|
|
|
if( argc < 2 )
|
|
{
|
|
printf("Usage: %s <point file> [shift x] [shift y] [shift z] [shift levelmin]\n\n",argv[0]);
|
|
return 0;
|
|
}
|
|
|
|
std::string point_file( argv[1] );
|
|
|
|
point_reader pfr;
|
|
pfr.read_points_from_file( point_file, 1.0, pp );
|
|
|
|
// if file has more than three columns, just take first three
|
|
// at the moment...
|
|
if( pfr.num_columns > 3 )
|
|
{
|
|
std::vector<double> xx;
|
|
xx.reserve( 3 * pp.size()/pfr.num_columns );
|
|
|
|
for( size_t i=0; i<pp.size()/pfr.num_columns; ++i )
|
|
for( size_t j=0; j<3; ++j )
|
|
xx.push_back( pp[ pfr.num_columns * i + j ] );
|
|
|
|
pp.swap( xx );
|
|
}
|
|
|
|
|
|
if( argc > 2 )
|
|
{
|
|
assert(argc==6);
|
|
|
|
shift[0] = atoi( argv[2] );
|
|
shift[1] = atoi( argv[3] );
|
|
shift[2] = atoi( argv[4] );
|
|
unsigned point_levelmin = atoi( argv[5] );
|
|
apply_shift( pp.size()/3, &pp[0], shift, point_levelmin );
|
|
shift_level = point_levelmin;
|
|
}
|
|
|
|
|
|
|
|
pellip = new min_ellipsoid( pp.size()/3, &pp[0] );
|
|
|
|
|
|
// output the center
|
|
float c[3], A[9];
|
|
pellip->get_center( c );
|
|
pellip->get_matrix( A );
|
|
|
|
printf("\n\n\n");
|
|
printf("region_ellipsoid_matrix[0] = %f, %f, %f\n", A[0], A[1], A[2] );
|
|
printf("region_ellipsoid_matrix[1] = %f, %f, %f\n", A[3], A[4], A[5] );
|
|
printf("region_ellipsoid_matrix[2] = %f, %f, %f\n", A[6], A[7], A[8] );
|
|
printf("region_ellipsoid_center = %f, %f, %f\n\n",c[0], c[1], c[2] );
|
|
|
|
|
|
delete pellip;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|