1
0
Fork 0
mirror of https://github.com/cosmo-sims/MUSIC.git synced 2024-09-10 06:43:45 +02:00
MUSIC/src/main.cc

1426 lines
49 KiB
C++

// This file is part of MUSIC
// A software package to generate ICs for cosmological simulations
// Copyright (C) 2010-2024 by Oliver Hahn
//
// monofonIC is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// monofonIC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <stdio.h>
#include <iostream>
#include <iomanip>
#include <math.h>
#include <thread>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_integration.h>
#if defined(CMAKE_BUILD)
extern "C"
{
extern const char *GIT_TAG;
extern const char *GIT_REV;
extern const char *GIT_BRANCH;
}
#endif
#include <exception>
#include <cfenv>
#include <general.hh>
#include <defaults.hh>
#include <output.hh>
#include <config_file.hh>
#include <poisson.hh>
#include <mg_solver.hh>
#include <fd_schemes.hh>
#include <random.hh>
#include <densities.hh>
#include <convolution_kernel.hh>
#include <perturbation_theory.hh>
#include <cosmology_parameters.hh>
#include <cosmology_calculator.hh>
#include <transfer_function.hh>
#define THE_CODE_NAME "music!"
#define THE_CODE_VERSION "2.0a"
// initialise with "default" values
namespace CONFIG{
// int MPI_thread_support = -1;
int MPI_task_rank = 0;
int MPI_task_size = 1;
bool MPI_ok = false;
// bool MPI_threads_ok = false;
bool FFTW_threads_ok = false;
int num_threads = 1;
}
namespace music
{
struct framework
{
// transfer_function *the_transfer_function;
// poisson_solver *the_poisson_solver;
config_file *the_config_file;
refinement_hierarchy *the_refinement_hierarchy;
};
}
//... declare static class members here
// transfer_function *TransferFunction_real::ptf_ = NULL;
transfer_function *TransferFunction_k::ptf_ = NULL;
tf_type TransferFunction_k::type_;
// tf_type TransferFunction_real::type_;
// real_t TransferFunction_real::nspec_ = -1.0;
real_t TransferFunction_k::nspec_ = -1.0;
std::unique_ptr<cosmology::calculator> the_cosmo_calc;
//... prototypes for routines used in main driver routine
void splash(void);
void modify_grid_for_TF(const refinement_hierarchy &rh_full, refinement_hierarchy &rh_TF, config_file &cf);
void print_hierarchy_stats(config_file &cf, const refinement_hierarchy &rh);
void store_grid_structure(config_file &cf, const refinement_hierarchy &rh);
double compute_finest_mean(grid_hierarchy &u);
double compute_finest_sigma(grid_hierarchy &u);
void splash(void)
{
music::ilog << std::endl
<< " __ __ __ __ ______ __ ______ " << std::endl
<< " /\\ \"-./ \\ /\\ \\/\\ \\ /\\ ___\\ /\\ \\ /\\ ___\\ " << std::endl
<< " \\ \\ \\-./\\ \\ \\ \\ \\_\\ \\ \\ \\___ \\ \\ \\ \\ \\ \\ \\____ " << std::endl
<< " \\ \\_\\ \\ \\_\\ \\ \\_____\\ \\/\\_____\\ \\ \\_\\ \\ \\_____\\ " << std::endl
<< " \\/_/ \\/_/ \\/_____/ \\/_____/ \\/_/ \\/_____/ " << std::endl << std::endl
<< " this is " << THE_CODE_NAME << " version " << THE_CODE_VERSION << std::endl << std::endl;
// git and versioning info:
music::ilog << "Version: git rev.: " << GIT_REV << ", tag: " << GIT_TAG << ", branch: " << GIT_BRANCH << std::endl;
// Compilation CMake configuration, time etc info:
music::ilog << "This " << CMAKE_BUILDTYPE_STR << " build was compiled at " << __TIME__ << " on " << __DATE__ << std::endl;
#ifdef __GNUC__
music::ilog << "Compiled with GNU C++ version " << __VERSION__ <<std::endl;
#else
music::ilog << "Compiled with " << __VERSION__ << std::endl;
#endif
}
void modify_grid_for_TF(const refinement_hierarchy &rh_full, refinement_hierarchy &rh_TF, config_file &cf)
{
unsigned lbase, lbaseTF, lmax, overlap;
lbase = cf.get_value<unsigned>("setup", "levelmin");
lmax = cf.get_value<unsigned>("setup", "levelmax");
lbaseTF = cf.get_value_safe<unsigned>("setup", "levelmin_TF", lbase);
overlap = cf.get_value_safe<unsigned>("setup", "overlap", 4);
rh_TF = rh_full;
unsigned pad = overlap;
for (unsigned i = lbase + 1; i <= lmax; ++i)
{
int x0[3], lx[3], lxmax = 0;
for (int j = 0; j < 3; ++j)
{
lx[j] = rh_TF.size(i, j) + 2 * pad;
x0[j] = rh_TF.offset_abs(i, j) - pad;
if (lx[j] > lxmax)
lxmax = lx[j];
}
//... make sure that grids are divisible by 4 for convolution.
lxmax += lxmax % 4;
for (int j = 0; j < 3; ++j)
{
double dl = 0.5 * ((double)(lxmax - lx[j]));
int add_left = (int)ceil(dl);
lx[j] = lxmax;
x0[j] -= add_left;
x0[j] += x0[j] % 2;
}
rh_TF.adjust_level(i, lx[0], lx[1], lx[2], x0[0], x0[1], x0[2]);
}
if (lbaseTF > lbase)
{
music::ilog << "- Will use levelmin = " << lbaseTF << " to compute density field...\n";
for (unsigned i = lbase; i <= lbaseTF; ++i)
{
unsigned nfull = (unsigned)pow(2, i);
rh_TF.adjust_level(i, nfull, nfull, nfull, 0, 0, 0);
}
}
}
void print_hierarchy_stats(config_file &cf, const refinement_hierarchy &rh)
{
double omegam = cf.get_value<double>("cosmology", "Omega_m");
double omegab = cf.get_value<double>("cosmology", "Omega_b");
bool bbaryons = cf.get_value<bool>("setup", "baryons");
double boxlength = cf.get_value<double>("setup", "boxlength");
unsigned levelmin = rh.levelmin();
double dx = boxlength / (double)(1 << levelmin), dx3 = dx * dx * dx;
double rhom = 2.77519737e11; // h-1 M_o / (h-1 Mpc)**3
double cmass, bmass(0.0), mtotgrid;
if (bbaryons)
{
cmass = (omegam - omegab) * rhom * dx3;
bmass = omegab * rhom * dx3;
}
else
cmass = omegam * rhom * dx3;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
if (rh.get_shift(0) != 0 || rh.get_shift(1) != 0 || rh.get_shift(2) != 0)
music::ilog << "- Domain will be shifted by (" << rh.get_shift(0) << ", " << rh.get_shift(1) << ", " << rh.get_shift(2) << ")\n"
<< std::endl;
music::ilog << "- Grid structure:\n";
for (unsigned ilevel = rh.levelmin(); ilevel <= rh.levelmax(); ++ilevel)
{
double rfac = 1.0 / (1 << (ilevel - rh.levelmin())), rfac3 = rfac * rfac * rfac;
mtotgrid = omegam * rhom * dx3 * rfac3 * rh.size(ilevel, 0) * rh.size(ilevel, 1) * rh.size(ilevel, 2);
music::ilog
<< " Level " << std::setw(3) << ilevel << " : offset = (" << std::setw(5) << rh.offset(ilevel, 0) << ", " << std::setw(5) << rh.offset(ilevel, 1) << ", " << std::setw(5) << rh.offset(ilevel, 2) << ")\n"
<< " size = (" << std::setw(5) << rh.size(ilevel, 0) << ", " << std::setw(5) << rh.size(ilevel, 1) << ", " << std::setw(5) << rh.size(ilevel, 2) << ")\n";
if (ilevel == rh.levelmax())
{
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ilog << "- Finest level :\n";
if (dx * rfac > 0.1)
music::ilog << " extent = " << dx * rfac * rh.size(ilevel, 0) << " x " << dx * rfac * rh.size(ilevel, 1) << " x " << dx * rfac * rh.size(ilevel, 2) << " h-3 Mpc**3\n";
else if (dx * rfac > 1e-4)
music::ilog << " extent = " << dx * rfac * 1000.0 * rh.size(ilevel, 0) << " x " << dx * rfac * 1000.0 * rh.size(ilevel, 1) << " x " << dx * rfac * 1000.0 * rh.size(ilevel, 2) << " h-3 kpc**3\n";
else
music::ilog << " extent = " << dx * rfac * 1.e6 * rh.size(ilevel, 0) << " x " << dx * rfac * 1.e6 * rh.size(ilevel, 1) << " x " << dx * rfac * 1.e6 * rh.size(ilevel, 2) << " h-3 pc**3\n";
music::ilog << " mtotgrid = " << mtotgrid << " h-1 M_o\n";
music::ilog << " particle mass = " << cmass * rfac3 << " h-1 M_o\n";
if (bbaryons)
music::ilog << " baryon mass/cell = " << bmass * rfac3 << " h-1 M_o\n";
if (dx * rfac > 0.1)
music::ilog << " dx = " << dx * rfac << " h-1 Mpc\n";
else if (dx * rfac > 1e-4)
music::ilog << " dx = " << dx * rfac * 1000.0 << " h-1 kpc\n";
else
music::ilog << " dx = " << dx * rfac * 1.e6 << " h-1 pc\n";
}
}
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
}
void store_grid_structure(config_file &cf, const refinement_hierarchy &rh)
{
char str1[128], str2[128];
for (unsigned i = rh.levelmin(); i <= rh.levelmax(); ++i)
{
for (int j = 0; j < 3; ++j)
{
snprintf(str1, 128, "offset(%d,%d)", i, j);
snprintf(str2, 128, "%ld", rh.offset(i, j));
cf.insert_value("setup", str1, str2);
snprintf(str1, 128, "size(%d,%d)", i, j);
snprintf(str2, 128, "%ld", rh.size(i, j));
cf.insert_value("setup", str1, str2);
}
}
}
double compute_finest_sigma(grid_hierarchy &u)
{
double sum = 0.0, sum2 = 0.0;
#pragma omp parallel for reduction(+:sum,sum2)
for (int ix = 0; ix < (int)(*u.get_grid(u.levelmax())).size(0); ++ix)
for (int iy = 0; iy < (int)(*u.get_grid(u.levelmax())).size(1); ++iy)
for (int iz = 0; iz < (int)(*u.get_grid(u.levelmax())).size(2); ++iz)
{
sum += (*u.get_grid(u.levelmax()))(ix, iy, iz);
sum2 += (*u.get_grid(u.levelmax()))(ix, iy, iz) * (*u.get_grid(u.levelmax()))(ix, iy, iz);
}
size_t N = (size_t)(*u.get_grid(u.levelmax())).size(0) * (size_t)(*u.get_grid(u.levelmax())).size(1) * (size_t)(*u.get_grid(u.levelmax())).size(2);
sum /= N;
sum2 /= N;
return sqrt(sum2 - sum * sum);
}
double compute_finest_absmax(grid_hierarchy &u)
{
double valmax = 0.0;
#pragma omp parallel for reduction(max:valmax)
for (int ix = 0; ix < (int)(*u.get_grid(u.levelmax())).size(0); ++ix)
for (int iy = 0; iy < (int)(*u.get_grid(u.levelmax())).size(1); ++iy)
for (int iz = 0; iz < (int)(*u.get_grid(u.levelmax())).size(2); ++iz)
{
if (std::fabs((*u.get_grid(u.levelmax()))(ix, iy, iz)) > valmax)
valmax = std::fabs((*u.get_grid(u.levelmax()))(ix, iy, iz));
}
return valmax;
}
double compute_finest_mean(grid_hierarchy &u)
{
double sum = 0.0;
size_t count = 0;
#pragma omp parallel for reduction(+:sum,count)
for (int ix = 0; ix < (int)(*u.get_grid(u.levelmax())).size(0); ++ix)
for (int iy = 0; iy < (int)(*u.get_grid(u.levelmax())).size(1); ++iy)
for (int iz = 0; iz < (int)(*u.get_grid(u.levelmax())).size(2); ++iz)
{
sum += (*u.get_grid(u.levelmax()))(ix, iy, iz);
count++;
}
return sum/count;
}
void add_constant_value( grid_hierarchy &u, const double val )
{
for( unsigned ilvl = u.levelmin(); ilvl<=u.levelmax(); ++ilvl )
{
#pragma omp parallel for
for (int ix = 0; ix < (int)(*u.get_grid(ilvl)).size(0); ++ix)
for (int iy = 0; iy < (int)(*u.get_grid(ilvl)).size(1); ++iy)
for (int iz = 0; iz < (int)(*u.get_grid(ilvl)).size(2); ++iz)
{
(*u.get_grid(ilvl))(ix, iy, iz) += val;
}
}
}
#include <system_stat.hh>
void output_system_info()
{
std::feclearexcept(FE_ALL_EXCEPT);
//------------------------------------------------------------------------------
// Write code configuration to screen
//------------------------------------------------------------------------------
// hardware related infos
music::ilog << std::setw(32) << std::left << "CPU vendor string" << " : " << SystemStat::Cpu().get_CPUstring() << std::endl;
// multi-threading related infos
music::ilog << std::setw(32) << std::left << "Available HW threads / task" << " : " << std::thread::hardware_concurrency() << " (" << CONFIG::num_threads << " used)" << std::endl;
// memory related infos
SystemStat::Memory mem;
unsigned availpmem = mem.get_AvailMem()/1024/1024;
unsigned usedpmem = mem.get_UsedMem()/1024/1024;
unsigned maxpmem = availpmem, minpmem = availpmem;
unsigned maxupmem = usedpmem, minupmem = usedpmem;
music::ilog << std::setw(32) << std::left << "Total system memory (phys)" << " : " << mem.get_TotalMem()/1024/1024 << " Mb" << std::endl;
music::ilog << std::setw(32) << std::left << "Used system memory (phys)" << " : " << "Max: " << maxupmem << " Mb, Min: " << minupmem << " Mb" << std::endl;
music::ilog << std::setw(32) << std::left << "Available system memory (phys)" << " : " << "Max: " << maxpmem << " Mb, Min: " << minpmem << " Mb" << std::endl;
// Kernel related infos
SystemStat::Kernel kern;
auto kinfo = kern.get_kernel_info();
music::ilog << std::setw(32) << std::left << "OS/Kernel version" << " : " << kinfo.kernel << " version " << kinfo.major << "." << kinfo.minor << " build " << kinfo.build_number << std::endl;
// FFTW related infos
music::ilog << std::setw(32) << std::left << "FFTW version" << " : " << FFTW_API(version) << std::endl;
music::ilog << std::setw(32) << std::left << "FFTW supports multi-threading" << " : " << (CONFIG::FFTW_threads_ok? "yes" : "no") << std::endl;
music::ilog << std::setw(32) << std::left << "FFTW mode" << " : ";
#if defined(FFTW_MODE_PATIENT)
music::ilog << "FFTW_PATIENT" << std::endl;
#elif defined(FFTW_MODE_MEASURE)
music::ilog << "FFTW_MEASURE" << std::endl;
#else
music::ilog << "FFTW_ESTIMATE" << std::endl;
#endif
}
/*****************************************************************************************************/
/*****************************************************************************************************/
/*****************************************************************************************************/
region_generator_plugin *the_region_generator;
int main(int argc, const char *argv[])
{
const unsigned nbnd = 4;
unsigned lbase, lmax, lbaseTF;
#if defined(NDEBUG)
music::logger::set_level(music::log_level::info);
#else
music::logger::set_level(music::log_level::debug);
#endif
//------------------------------------------------------------------------------
//... parse command line options
//------------------------------------------------------------------------------
if (argc != 2)
{
splash();
std::cout << " This version is compiled with the following plug-ins:\n";
cosmology::print_ParameterSets();
print_region_generator_plugins();
print_transfer_function_plugins();
print_RNG_plugins();
print_output_plugins();
std::cerr << "\n In order to run, you need to specify a parameter file!\n\n";
exit(0);
}
//------------------------------------------------------------------------------
//... open log file
//------------------------------------------------------------------------------
char logfname[128];
snprintf(logfname, 128, "%s_log.txt", argv[1]);
music::logger::set_output(logfname);
time_t ltime = time(NULL);
splash();
music::ilog.Print("Opening log file \'%s\'.", logfname);
music::ulog.Print("Running %s, version %s", THE_CODE_NAME, THE_CODE_VERSION);
music::ulog.Print("Log is for run started %s", asctime(localtime(&ltime)));
//------------------------------------------------------------------------------
//... read and interpret config file
//------------------------------------------------------------------------------
config_file cf(argv[1]);
std::string tfname, randfname, temp;
bool force_shift(false);
//------------------------------------------------------------------------------
//... init multi-threading
//------------------------------------------------------------------------------
CONFIG::FFTW_threads_ok = FFTW_API(init_threads)();
CONFIG::num_threads = cf.get_value_safe<unsigned>("execution", "NumThreads",std::thread::hardware_concurrency());
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
output_system_info();
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
//------------------------------------------------------------------------------
//... initialize some parameters about grid set-up
//------------------------------------------------------------------------------
lbase = cf.get_value<unsigned>("setup", "levelmin");
lmax = cf.get_value<unsigned>("setup", "levelmax");
lbaseTF = cf.get_value_safe<unsigned>("setup", "levelmin_TF", lbase);
if (lbase == lmax && !force_shift)
cf.insert_value("setup", "no_shift", "yes");
if (lbaseTF < lbase)
{
music::ilog << " - WARNING: levelminTF < levelmin. This is not good!" << std::endl
<< " I will set levelminTF = levelmin." << std::endl;
music::ulog.Print("levelminTF < levelmin. set levelminTF = levelmin.");
lbaseTF = lbase;
cf.insert_value("setup", "levelmin_TF", cf.get_value<std::string>("setup", "levelmin"));
}
//------------------------------------------------------------------------------
//... initialize cosmology
//------------------------------------------------------------------------------
bool
do_baryons = cf.get_value<bool>("setup", "baryons"),
do_2LPT = cf.get_value_safe<bool>("setup", "use_2LPT", false),
do_LLA = cf.get_value_safe<bool>("setup", "use_LLA", false),
do_counter_mode = cf.get_value_safe<bool>("setup", "zero_zoom_velocity", false);
the_cosmo_calc = std::make_unique<cosmology::calculator>(cf);
bool tf_has_velocities = the_cosmo_calc.get()->transfer_function_.get()->tf_has_velocities();
//--------------------------------------------------------------------------------------------------------
//! starting redshift
const real_t zstart = cf.get_value<double>("setup", "zstart");
const real_t astart = 1.0/(1.0+zstart);
music::ilog << "- starting at a=" << 1.0/(1.0+zstart) << std::endl;
double cosmo_dplus = the_cosmo_calc->get_growth_factor(astart) / the_cosmo_calc->get_growth_factor(1.0);
double cosmo_vfact = the_cosmo_calc->get_vfact(astart);
// if (!the_cosmo_calc.get()->transfer_function_.get()->tf_has_total0()){
// the_cosmo_calc->cosmo_param_["pnorm"] *= cosmo_dplus * cosmo_dplus;
// }
double cosmo_pnorm = the_cosmo_calc->cosmo_param_["pnorm"];
//... directly use the normalisation via a parameter rather than the calculated one
cosmo_pnorm = cf.get_value_safe<double>("setup", "force_pnorm", cosmo_pnorm);
double vfac2lpt = 1.0;
if (the_cosmo_calc->transfer_function_->tf_velocity_units() && do_baryons)
{
vfac2lpt = cosmo_vfact; // if the velocities are in velocity units, we need to divide by vfact for the 2lPT term
cosmo_vfact = 1.0;
}
{
char tmpstr[128];
snprintf(tmpstr, 128, "%.12g", cosmo_pnorm);
cf.insert_value("cosmology", "pnorm", tmpstr);
snprintf(tmpstr, 128, "%.12g", cosmo_dplus);
cf.insert_value("cosmology", "dplus", tmpstr);
snprintf(tmpstr, 128, "%.12g", cosmo_vfact);
cf.insert_value("cosmology", "vfact", tmpstr);
}
the_region_generator = select_region_generator_plugin(cf);
//------------------------------------------------------------------------------
//... determine run parameters
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//... start up the random number generator plugin
//... see if we need to set some grid building constraints
noise_generator rand( cf );
//------------------------------------------------------------------------------
//... determine the refinement hierarchy
//------------------------------------------------------------------------------
refinement_hierarchy rh_Poisson(cf);
store_grid_structure(cf, rh_Poisson);
// rh_Poisson.output();
print_hierarchy_stats(cf, rh_Poisson);
refinement_hierarchy rh_TF(rh_Poisson);
modify_grid_for_TF(rh_Poisson, rh_TF, cf);
// rh_TF.output();
music::ulog.Print("Grid structure for Poisson solver:");
rh_Poisson.output_log();
music::ulog.Print("Grid structure for density convolution:");
rh_TF.output_log();
//------------------------------------------------------------------------------
//... initialize the output plug-in
//------------------------------------------------------------------------------
std::string outformat, outfname;
outformat = cf.get_value<std::string>("output", "format");
outfname = cf.get_value<std::string>("output", "filename");
output_plugin *the_output_plugin = select_output_plugin(cf);
//------------------------------------------------------------------------------
//... initialize the random numbers
//------------------------------------------------------------------------------
music::ilog << "===============================================================================" << std::endl;
music::ilog << " GENERATING WHITE NOISE\n";
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ilog << "Computing white noise..." << std::endl;
rand.initialize_for_grid_structure( rh_TF );
//------------------------------------------------------------------------------
//... initialize the Poisson solver
//------------------------------------------------------------------------------
bool bdefd = true; // we set this by default and don't allow it to be changed outside any more
bool bglass = cf.get_value_safe<bool>("output", "glass", false);
bool bsph = cf.get_value_safe<bool>("setup", "do_SPH", false) && do_baryons;
bool bbshift = bsph && !bglass;
bool kspace = cf.get_value_safe<bool>("poisson", "kspace", false);
bool kspace2LPT = kspace;
bool decic_DM = cf.get_value_safe<bool>("output", "glass_cicdeconvolve", false);
bool decic_baryons = cf.get_value_safe<bool>("output", "glass_cicdeconvolve", false) & bsph;
std::array<double,3> counter_mode_amp;
//... if in unigrid mode, use k-space instead of hybrid
if (bdefd && (lbase == lmax))
{
kspace = true;
bdefd = false;
kspace2LPT = false;
}
std::string poisson_solver_name;
if (kspace)
poisson_solver_name = std::string("fft_poisson");
else
poisson_solver_name = std::string("mg_poisson");
unsigned grad_order = cf.get_value_safe<unsigned>("poisson", "grad_order", 4);
//... switch off if using kspace anyway
// bdefd &= !kspace;
poisson_plugin_creator *the_poisson_plugin_creator = get_poisson_plugin_map()[poisson_solver_name];
poisson_plugin *the_poisson_solver = the_poisson_plugin_creator->create(cf);
// .. this parameter needs to be read after the random module is initialised as it will be overwritten by it
// .. e.g. PANPHASIA wants false, while MUSIC RNG wants true
const bool use_fourier_coarsening = cf.get_value_safe<bool>("setup", "fourier_splicing", true);
//---------------------------------------------------------------------------------
//... THIS IS THE MAIN DRIVER BRANCHING TREE RUNNING THE VARIOUS PARTS OF THE CODE
//---------------------------------------------------------------------------------
bool bfatal = false;
try
{
if (!do_2LPT)
{
music::ulog.Print("Entering 1LPT branch");
//------------------------------------------------------------------------------
//... cdm density and displacements
//------------------------------------------------------------------------------
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING DARK MATTER DISPLACEMENTS\n";
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing dark matter displacements...");
grid_hierarchy f(nbnd); //, u(nbnd);
tf_type my_tf_type = delta_cdm;
if (!do_baryons)
my_tf_type = delta_matter;
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), my_tf_type, rh_TF, rand, f, false, false);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
music::ulog.Print("Writing CDM data");
the_output_plugin->write_dm_mass(f);
the_output_plugin->write_dm_density(f);
grid_hierarchy u(f);
u.zero();
the_poisson_solver->solve(f, u);
if (!bdefd)
f.deallocate();
music::ulog.Print("Writing CDM potential");
the_output_plugin->write_dm_potential(u);
//------------------------------------------------------------------------------
//... DM displacements
//------------------------------------------------------------------------------
{
grid_hierarchy data_forIO(u);
for (int icoord = 0; icoord < 3; ++icoord)
{
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_DM);
*data_forIO.get_grid(data_forIO.levelmax()) /= 1 << f.levelmax();
the_poisson_solver->gradient_add(icoord, u, data_forIO);
}
else
//... displacement
the_poisson_solver->gradient(icoord, u, data_forIO);
double dispmax = compute_finest_absmax(data_forIO);
music::ilog.Print("\t - max. %c-displacement of HR particles is %f [mean dx]", 'x' + icoord, dispmax * (double)(1ll << data_forIO.levelmax()));
coarsen_density(rh_Poisson, data_forIO, false);
//... compute counter-mode to minimize advection errors
counter_mode_amp[icoord] = compute_finest_mean(data_forIO);
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord] );
music::ulog.Print("Writing CDM displacements");
the_output_plugin->write_dm_position(icoord, data_forIO);
}
if (do_baryons)
u.deallocate();
data_forIO.deallocate();
}
//------------------------------------------------------------------------------
//... gas density
//------------------------------------------------------------------------------
if (do_baryons)
{
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING BARYON DENSITY\n";
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing baryon density...");
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), delta_baryon, rh_TF, rand, f, false, bbshift);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
if (!do_LLA)
{
music::ulog.Print("Writing baryon density");
the_output_plugin->write_gas_density(f);
}
if (bsph)
{
u = f;
u.zero();
the_poisson_solver->solve(f, u);
if (!bdefd)
f.deallocate();
grid_hierarchy data_forIO(u);
for (int icoord = 0; icoord < 3; ++icoord)
{
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_baryons);
*data_forIO.get_grid(data_forIO.levelmax()) /= 1 << f.levelmax();
the_poisson_solver->gradient_add(icoord, u, data_forIO);
}
else
//... displacement
the_poisson_solver->gradient(icoord, u, data_forIO);
coarsen_density(rh_Poisson, data_forIO, false);
music::ulog.Print("Writing baryon displacements");
the_output_plugin->write_gas_position(icoord, data_forIO);
}
u.deallocate();
data_forIO.deallocate();
if (bdefd)
f.deallocate();
}
else if (do_LLA)
{
u = f;
u.zero();
the_poisson_solver->solve(f, u);
compute_LLA_density(u, f, grad_order);
u.deallocate();
normalize_density(f);
music::ulog.Print("Writing baryon density");
the_output_plugin->write_gas_density(f);
}
f.deallocate();
}
//------------------------------------------------------------------------------
//... velocities
//------------------------------------------------------------------------------
if ((!tf_has_velocities || !do_baryons) && !bsph)
{
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING VELOCITIES\n";
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing velocitites...");
if (do_baryons || tf_has_velocities)
{
music::ulog.Print("Generating velocity perturbations...");
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), theta_cdm, rh_TF, rand, f, false, false);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
u = f;
u.zero();
the_poisson_solver->solve(f, u);
if (!bdefd)
f.deallocate();
}
grid_hierarchy data_forIO(u);
for (int icoord = 0; icoord < 3; ++icoord)
{
//... displacement
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_baryons);
*data_forIO.get_grid(data_forIO.levelmax()) /= 1 << f.levelmax();
the_poisson_solver->gradient_add(icoord, u, data_forIO);
}
else
the_poisson_solver->gradient(icoord, u, data_forIO);
//... multiply to get velocity
data_forIO *= cosmo_vfact;
//... velocity kick to keep refined region centered?
double sigv = compute_finest_sigma(data_forIO);
music::ulog.Print("sigma of %c-velocity of high-res particles is %f", 'x' + icoord, sigv);
double meanv = compute_finest_mean(data_forIO);
music::ulog.Print("mean of %c-velocity of high-res particles is %f", 'x' + icoord, meanv);
double maxv = compute_finest_absmax(data_forIO);
music::ulog.Print("max of abs of %c-velocity of high-res particles is %f", 'x' + icoord, maxv);
coarsen_density(rh_Poisson, data_forIO, false);
// add counter velocity-mode
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord]*cosmo_vfact );
music::ulog.Print("Writing CDM velocities");
the_output_plugin->write_dm_velocity(icoord, data_forIO);
if (do_baryons)
{
music::ulog.Print("Writing baryon velocities");
the_output_plugin->write_gas_velocity(icoord, data_forIO);
}
}
u.deallocate();
data_forIO.deallocate();
}
else
{
music::ilog.Print("Computing separate velocities for CDM and baryons:");
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING DARK MATTER VELOCITIES" << std::endl;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing dark matter velocitites...");
//... we do baryons and have velocity transfer functions, or we do SPH and not to shift
//... do DM first
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), theta_cdm, rh_TF, rand, f, false, false);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
u = f;
u.zero();
the_poisson_solver->solve(f, u);
if (!bdefd)
f.deallocate();
grid_hierarchy data_forIO(u);
for (int icoord = 0; icoord < 3; ++icoord)
{
//... displacement
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_DM);
*data_forIO.get_grid(data_forIO.levelmax()) /= 1 << f.levelmax();
the_poisson_solver->gradient_add(icoord, u, data_forIO);
}
else
the_poisson_solver->gradient(icoord, u, data_forIO);
//... multiply to get velocity
data_forIO *= cosmo_vfact;
double sigv = compute_finest_sigma(data_forIO);
music::ulog.Print("sigma of %c-velocity of high-res DM is %f", 'x' + icoord, sigv);
double meanv = compute_finest_mean(data_forIO);
music::ulog.Print("mean of %c-velocity of high-res particles is %f", 'x' + icoord, meanv);
double maxv = compute_finest_absmax(data_forIO);
music::ulog.Print("max of abs of %c-velocity of high-res particles is %f", 'x' + icoord, maxv);
coarsen_density(rh_Poisson, data_forIO, false);
// add counter velocity mode
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord]*cosmo_vfact );
music::ulog.Print("Writing CDM velocities");
the_output_plugin->write_dm_velocity(icoord, data_forIO);
}
u.deallocate();
data_forIO.deallocate();
f.deallocate();
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING BARYON VELOCITIES" << std::endl;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing baryon velocitites...");
//... do baryons
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), theta_baryon, rh_TF, rand, f, false, bbshift);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
u = f;
u.zero();
the_poisson_solver->solve(f, u);
if (!bdefd)
f.deallocate();
data_forIO = u;
for (int icoord = 0; icoord < 3; ++icoord)
{
//... displacement
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_baryons);
*data_forIO.get_grid(data_forIO.levelmax()) /= 1 << f.levelmax();
the_poisson_solver->gradient_add(icoord, u, data_forIO);
}
else
the_poisson_solver->gradient(icoord, u, data_forIO);
//... multiply to get velocity
data_forIO *= cosmo_vfact;
double sigv = compute_finest_sigma(data_forIO);
music::ulog.Print("sigma of %c-velocity of high-res baryons is %f", 'x' + icoord, sigv);
double meanv = compute_finest_mean(data_forIO);
music::ulog.Print("mean of %c-velocity of high-res baryons is %f", 'x' + icoord, meanv);
double maxv = compute_finest_absmax(data_forIO);
music::ulog.Print("max of abs of %c-velocity of high-res baryons is %f", 'x' + icoord, maxv);
coarsen_density(rh_Poisson, data_forIO, false);
// add counter velocity mode
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord]*cosmo_vfact );
music::ulog.Print("Writing baryon velocities");
the_output_plugin->write_gas_velocity(icoord, data_forIO);
}
u.deallocate();
f.deallocate();
data_forIO.deallocate();
}
/*********************************************************************************************/
/*********************************************************************************************/
/*** 2LPT ************************************************************************************/
/*********************************************************************************************/
}
else
{
//.. use 2LPT ...
music::ulog.Print("Entering 2LPT branch");
grid_hierarchy f(nbnd), u1(nbnd), u2LPT(nbnd), f2LPT(nbnd);
tf_type my_tf_type = theta_cdm;
bool dm_only = !do_baryons;
if (!do_baryons || !tf_has_velocities)
my_tf_type = theta_matter;
music::ilog << "===============================================================================" << std::endl;
if (my_tf_type == theta_matter)
{
music::ilog << " COMPUTING VELOCITIES" << std::endl;
}
else
{
music::ilog << " COMPUTING DARK MATTER VELOCITIES" << std::endl;
}
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), my_tf_type, rh_TF, rand, f, false, false);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
if (dm_only)
{
the_output_plugin->write_dm_density(f);
the_output_plugin->write_dm_mass(f);
}
u1 = f;
u1.zero();
//... compute 1LPT term
the_poisson_solver->solve(f, u1);
//... compute 2LPT term
if (bdefd)
f2LPT = f;
else
f.deallocate();
music::ilog.Print("- Computing 2LPT term....");
if (!kspace2LPT)
compute_2LPT_source(u1, f2LPT, grad_order);
else
{
music::ulog.Print(" computing term using FFT");
compute_2LPT_source_FFT(cf, u1, f2LPT);
}
music::ilog.Print("- Solving 2LPT Poisson equation");
u2LPT = u1;
u2LPT.zero();
the_poisson_solver->solve(f2LPT, u2LPT);
//... if doing the hybrid step, we need a combined source term
if (bdefd)
{
f2LPT *= 6.0 / 7.0 / vfac2lpt;
f += f2LPT;
if (!dm_only)
f2LPT.deallocate();
}
//... add the 2LPT contribution
u2LPT *= 6.0 / 7.0 / vfac2lpt;
u1 += u2LPT;
grid_hierarchy data_forIO(u1);
for (int icoord = 0; icoord < 3; ++icoord)
{
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_DM);
*data_forIO.get_grid(data_forIO.levelmax()) /= (1 << f.levelmax());
the_poisson_solver->gradient_add(icoord, u1, data_forIO);
}
else
the_poisson_solver->gradient(icoord, u1, data_forIO);
data_forIO *= cosmo_vfact;
double sigv = compute_finest_sigma(data_forIO);
double meanv = compute_finest_mean(data_forIO);
music::ulog.Print("mean of %c-velocity of high-res particles is %f", 'x' + icoord, meanv);
double maxv = compute_finest_absmax(data_forIO);
music::ulog.Print("max of abs of %c-velocity of high-res particles is %f", 'x' + icoord, maxv);
music::ilog << "\t - velocity component " << icoord << " : sigma = " << sigv << std::endl;
music::ilog << "\t - velocity component " << icoord << " : mean = " << meanv << std::endl;
coarsen_density(rh_Poisson, data_forIO, false);
//... compute counter-mode to minimize advection errors
counter_mode_amp[icoord] = compute_finest_mean(data_forIO);
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord] );
music::ulog.Print("Writing CDM velocities");
the_output_plugin->write_dm_velocity(icoord, data_forIO);
if (do_baryons && !tf_has_velocities && !bsph)
{
music::ulog.Print("Writing baryon velocities");
the_output_plugin->write_gas_velocity(icoord, data_forIO);
}
}
data_forIO.deallocate();
if (!dm_only)
u1.deallocate();
if (do_baryons && (tf_has_velocities || bsph))
{
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING BARYON VELOCITIES" << std::endl;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing baryon displacements...");
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), theta_baryon, rh_TF, rand, f, false, bbshift);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
u1 = f;
u1.zero();
if (bdefd)
f2LPT = f;
//... compute 1LPT term
the_poisson_solver->solve(f, u1);
music::ilog.Print("Writing baryon potential");
the_output_plugin->write_gas_potential(u1);
//... compute 2LPT term
u2LPT = f;
u2LPT.zero();
if (!kspace2LPT)
compute_2LPT_source(u1, f2LPT, grad_order);
else
compute_2LPT_source_FFT(cf, u1, f2LPT);
the_poisson_solver->solve(f2LPT, u2LPT);
//... if doing the hybrid step, we need a combined source term
if (bdefd)
{
f2LPT *= 6.0 / 7.0 / vfac2lpt;
f += f2LPT;
f2LPT.deallocate();
}
//... add the 2LPT contribution
u2LPT *= 6.0 / 7.0 / vfac2lpt;
u1 += u2LPT;
u2LPT.deallocate();
// grid_hierarchy data_forIO(u1);
data_forIO = u1;
for (int icoord = 0; icoord < 3; ++icoord)
{
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_baryons);
*data_forIO.get_grid(data_forIO.levelmax()) /= (1 << f.levelmax());
the_poisson_solver->gradient_add(icoord, u1, data_forIO);
}
else
the_poisson_solver->gradient(icoord, u1, data_forIO);
data_forIO *= cosmo_vfact;
double sigv = compute_finest_sigma(data_forIO);
double meanv = compute_finest_mean(data_forIO);
music::ulog.Print("mean of %c-velocity of high-res baryons is %f", 'x' + icoord, meanv);
double maxv = compute_finest_absmax(data_forIO);
music::ulog.Print("max of abs of %c-velocity of high-res baryons is %f", 'x' + icoord, maxv);
music::ilog << "\t - velocity component " << icoord << " : sigma = " << sigv << std::endl;
music::ilog << "\t - velocity component " << icoord << " : mean = " << meanv << std::endl;
coarsen_density(rh_Poisson, data_forIO, false);
// add counter velocity mode
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord] );
music::ulog.Print("Writing baryon velocities");
the_output_plugin->write_gas_velocity(icoord, data_forIO);
}
data_forIO.deallocate();
u1.deallocate();
}
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING DARK MATTER DISPLACEMENTS" << std::endl;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing dark matter displacements...");
//... if baryons are enabled, the displacements have to be recomputed
//... otherwise we can compute them directly from the velocities
if (!dm_only)
{
// my_tf_type is cdm if do_baryons==true, total otherwise
my_tf_type = delta_cdm;
if (!do_baryons || !the_cosmo_calc->transfer_function_->tf_is_distinct())
my_tf_type = delta_matter;
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), my_tf_type, rh_TF, rand, f, false, false);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
music::ulog.Print("Writing CDM data");
the_output_plugin->write_dm_density(f);
the_output_plugin->write_dm_mass(f);
u1 = f;
u1.zero();
if (bdefd)
f2LPT = f;
//... compute 1LPT term
the_poisson_solver->solve(f, u1);
//... compute 2LPT term
u2LPT = f;
u2LPT.zero();
if (!kspace2LPT)
compute_2LPT_source(u1, f2LPT, grad_order);
else
compute_2LPT_source_FFT(cf, u1, f2LPT);
the_poisson_solver->solve(f2LPT, u2LPT);
if (bdefd)
{
f2LPT *= 3.0 / 7.0;
f += f2LPT;
f2LPT.deallocate();
}
u2LPT *= 3.0 / 7.0;
u1 += u2LPT;
u2LPT.deallocate();
}
else
{
//... reuse prior data
/*f-=f2LPT;
the_output_plugin->write_dm_density(f);
the_output_plugin->write_dm_mass(f);
f+=f2LPT;*/
u2LPT *= 0.5;
u1 -= u2LPT;
u2LPT.deallocate();
if (bdefd)
{
f2LPT *= 0.5;
f -= f2LPT;
f2LPT.deallocate();
}
}
data_forIO = u1;
for (int icoord = 0; icoord < 3; ++icoord)
{
//... displacement
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_DM);
*data_forIO.get_grid(data_forIO.levelmax()) /= 1 << f.levelmax();
the_poisson_solver->gradient_add(icoord, u1, data_forIO);
}
else
the_poisson_solver->gradient(icoord, u1, data_forIO);
double dispmax = compute_finest_absmax(data_forIO);
music::ilog.Print("\t - max. %c-displacement of HR particles is %f [mean dx]", 'x' + icoord, dispmax * (double)(1ll << data_forIO.levelmax()));
coarsen_density(rh_Poisson, data_forIO, false);
// add counter mode
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord]/cosmo_vfact );
music::ulog.Print("Writing CDM displacements");
the_output_plugin->write_dm_position(icoord, data_forIO);
}
data_forIO.deallocate();
u1.deallocate();
if (do_baryons && !bsph)
{
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING BARYON DENSITY" << std::endl;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing baryon density...");
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), delta_baryon, rh_TF, rand, f, true, false);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
if (!do_LLA)
the_output_plugin->write_gas_density(f);
else
{
u1 = f;
u1.zero();
//... compute 1LPT term
the_poisson_solver->solve(f, u1);
//... compute 2LPT term
u2LPT = f;
u2LPT.zero();
if (!kspace2LPT)
compute_2LPT_source(u1, f2LPT, grad_order);
else
compute_2LPT_source_FFT(cf, u1, f2LPT);
the_poisson_solver->solve(f2LPT, u2LPT);
u2LPT *= 3.0 / 7.0;
u1 += u2LPT;
u2LPT.deallocate();
compute_LLA_density(u1, f, grad_order);
normalize_density(f);
music::ulog.Print("Writing baryon density");
the_output_plugin->write_gas_density(f);
}
}
else if (do_baryons && bsph)
{
music::ilog << "===============================================================================" << std::endl;
music::ilog << " COMPUTING BARYON DISPLACEMENTS" << std::endl;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ulog.Print("Computing baryon displacements...");
GenerateDensityHierarchy(cf, the_cosmo_calc.get(), delta_baryon, rh_TF, rand, f, false, bbshift);
coarsen_density(rh_Poisson, f, use_fourier_coarsening);
f.add_refinement_mask(rh_Poisson.get_coord_shift());
normalize_density(f);
music::ulog.Print("Writing baryon density");
the_output_plugin->write_gas_density(f);
u1 = f;
u1.zero();
if (bdefd)
f2LPT = f;
//... compute 1LPT term
the_poisson_solver->solve(f, u1);
//... compute 2LPT term
u2LPT = f;
u2LPT.zero();
if (!kspace2LPT)
compute_2LPT_source(u1, f2LPT, grad_order);
else
compute_2LPT_source_FFT(cf, u1, f2LPT);
the_poisson_solver->solve(f2LPT, u2LPT);
if (bdefd)
{
f2LPT *= 3.0 / 7.0;
f += f2LPT;
f2LPT.deallocate();
}
u2LPT *= 3.0 / 7.0;
u1 += u2LPT;
u2LPT.deallocate();
data_forIO = u1;
for (int icoord = 0; icoord < 3; ++icoord)
{
//... displacement
if (bdefd)
{
data_forIO.zero();
*data_forIO.get_grid(data_forIO.levelmax()) = *f.get_grid(f.levelmax());
poisson_hybrid(*data_forIO.get_grid(data_forIO.levelmax()), icoord, grad_order,
data_forIO.levelmin() == data_forIO.levelmax(), decic_baryons);
*data_forIO.get_grid(data_forIO.levelmax()) /= 1 << f.levelmax();
the_poisson_solver->gradient_add(icoord, u1, data_forIO);
}
else
the_poisson_solver->gradient(icoord, u1, data_forIO);
coarsen_density(rh_Poisson, data_forIO, false);
// add counter mode
if( do_counter_mode ) add_constant_value( data_forIO, -counter_mode_amp[icoord]/cosmo_vfact );
music::ulog.Print("Writing baryon displacements");
the_output_plugin->write_gas_position(icoord, data_forIO);
}
}
}
//------------------------------------------------------------------------------
//... finish output
//------------------------------------------------------------------------------
the_output_plugin->finalize();
delete the_output_plugin;
}
catch (std::runtime_error &excp)
{
music::elog.Print("Fatal error occured. Code will exit:");
music::elog.Print("Exception: %s", excp.what());
std::cerr << " - " << excp.what() << std::endl;
std::cerr << " - A fatal error occured. We need to exit...\n";
bfatal = true;
}
music::ilog << "===============================================================================" << std::endl;
if (!bfatal)
{
music::ilog << " - Wrote output file \'" << outfname << "\'\n using plugin \'" << outformat << "\'...\n";
music::ulog.Print("Wrote output file \'%s\'.", outfname.c_str());
}
//------------------------------------------------------------------------------
//... clean up
//------------------------------------------------------------------------------
// delete the_transfer_function_plugin;
delete the_poisson_solver;
if( CONFIG::FFTW_threads_ok )
FFTW_API(cleanup_threads)();
//------------------------------------------------------------------------------
//... we are done !
//------------------------------------------------------------------------------
music::ilog << " - Done!" << std::endl << std::endl;
ltime = time(NULL);
music::ulog.Print("Run finished succesfully on %s", asctime(localtime(&ltime)));
cf.dump_to_log();
return 0;
}