1
0
Fork 0
mirror of https://github.com/cosmo-sims/MUSIC.git synced 2024-09-11 07:53:43 +02:00
MUSIC/src/constraints.cc
2024-02-24 10:52:43 +01:00

504 lines
14 KiB
C++

// This file is part of monofonIC (MUSIC2)
// A software package to generate ICs for cosmological simulations
// Copyright (C) 2024 by Oliver Hahn
//
// monofonIC is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// monofonIC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "constraints.hh"
double dsigma2_tophat( double k, void *params );
double dsigma2_gauss( double k, void *params );
double find_coll_z( const std::vector<double>& z, const std::vector<double>& sigma, double nu );
void compute_sigma_tophat( config_file& cf, transfer_function *ptf, double R, std::vector<double>& z, std::vector<double>& sigma );
void compute_sigma_gauss( config_file& cf, transfer_function *ptf, double R, std::vector<double>& z, std::vector<double>& sigma );
double dsigma2_tophat( double k, void *pparams )
{
if( k<=0.0 )
return 0.0;
char **params = reinterpret_cast<char**> (pparams);
transfer_function *ptf = reinterpret_cast<transfer_function*>(params[0]);
double x = k * *reinterpret_cast<double*>(params[1]);
double nspect = *reinterpret_cast<double*>(params[2]);
double w = 3.0*(sin(x)-x*cos(x))/(x*x*x);
double tfk = ptf->compute(k,delta_matter);
return k*k * w*w * pow(k,nspect) * tfk*tfk;
}
double dsigma2_gauss( double k, void *pparams )
{
if( k<=0.0 )
return 0.0;
char **params = reinterpret_cast<char**> (pparams);
transfer_function *ptf = reinterpret_cast<transfer_function*> (params[0]);
double x = k * *reinterpret_cast<double*>(params[1]);
double nspect = *reinterpret_cast<double*>(params[2]);
double w = exp(-x*x*0.5);
double tfk = ptf->compute(k,delta_matter);
return k*k * w*w * pow(k,nspect) * tfk*tfk;
}
double find_coll_z( const std::vector<double>& z, const std::vector<double>& sigma, double nu )
{
double dcoll = 1.686/nu;
double zcoll = 0.0;
gsl_interp_accel *acc = gsl_interp_accel_alloc ();
gsl_spline *spline = gsl_spline_alloc (gsl_interp_cspline, z.size());
gsl_spline_init (spline, &sigma[0], &z[0], z.size() );
zcoll = gsl_spline_eval(spline, dcoll, acc );
gsl_spline_free (spline);
gsl_interp_accel_free (acc);
return zcoll;
}
void compute_sigma_tophat( config_file& cf, transfer_function *ptf, double R, std::vector<double>& z, std::vector<double>& sigma )
{
z.clear();
sigma.clear();
cosmology::parameters cosm( cf );
cosmology::calculator ccalc( cf );
double zmin = 0.0, zmax = 200.0;
int nz = 100;
for( int i=0; i <nz; ++i )
z.push_back( zmax - i*(zmax-zmin)/(nz-1.0) );
double D0 = ccalc.get_growth_factor(1.0);
double sigma8 = cf.get_value<double>("cosmology","sigma_8");
double nspec = cf.get_value<double>("cosmology","nspec");
double sigma0 = 0.0;
{
double eight=8.0;
char *params[3];
params[0] = reinterpret_cast<char*> (ptf);
params[1] = reinterpret_cast<char*> (&eight);
params[2] = reinterpret_cast<char*> (&nspec);
sigma0 = sqrt(4.0*M_PI*integrate( &dsigma2_tophat, 1e-4, 1e4, reinterpret_cast<void*>(params) ));
}
for( int i=0; i <nz; ++i )
{
void *params[3];
params[0] = reinterpret_cast<char*> (ptf);
params[1] = reinterpret_cast<char*> (&R);
params[2] = reinterpret_cast<char*> (&nspec);
double sig = sqrt(4.0*M_PI*integrate( &dsigma2_tophat, 1e-4, 1e4, reinterpret_cast<void*>(params) ));
double Dz = ccalc.get_growth_factor(1./(1.+z[i]));
sigma.push_back( sig*sigma8/sigma0*Dz/D0 );
}
}
void compute_sigma_gauss( config_file& cf, transfer_function *ptf, double R, std::vector<double>& z, std::vector<double>& sigma )
{
z.clear();
sigma.clear();
cosmology::parameters cosm( cf );
cosmology::calculator ccalc( cf );
double zmin = 0.0, zmax = 200.0;
int nz = 100;
for( int i=0; i <nz; ++i )
z.push_back( zmax - i*(zmax-zmin)/(nz-1.0) );
double D0 = ccalc.get_growth_factor(1.0);
double sigma8 = cf.get_value<double>("cosmology","sigma_8");
double nspec = cf.get_value<double>("cosmology","nspec");
double sigma0 = 0.0;
{
double eight=8.0;
char *params[3];
params[0] = reinterpret_cast<char*> (ptf);
params[1] = reinterpret_cast<char*> (&eight);
params[2] = reinterpret_cast<char*> (&nspec);
sigma0 = sqrt(4.0*M_PI*integrate( &dsigma2_tophat, 1e-4, 1e4, reinterpret_cast<void*>(params) ));
}
for( int i=0; i <nz; ++i )
{
void *params[3];
params[0] = reinterpret_cast<char*> (ptf);
params[1] = reinterpret_cast<char*> (&R);
params[2] = reinterpret_cast<char*> (&nspec);
double sig = sqrt(4.0*M_PI*integrate( &dsigma2_gauss, 1e-4, 1e4, reinterpret_cast<void*>(params) ));
double Dz = ccalc.get_growth_factor(1./(1.+z[i]));
//std::cerr << z[i] << " " << sig << std::endl;
sigma.push_back( sig*sigma8/sigma0*Dz/D0 );
}
}
constraint_set::constraint_set( config_file& cf, transfer_function *ptf )
: pcf_( &cf ), ptf_( ptf )
{
pcosmo_ = new cosmology::parameters( cf );
pccalc_ = new cosmology::calculator( cf );
dplus0_ = 1.0;//pccalc_->CalcGrowthFactor( 1.0 );
unsigned i=0;
double astart = 1.0/(1.0+pcf_->get_value<double>("setup","zstart"));
unsigned levelmin = pcf_->get_value<unsigned>("setup","levelmin");
unsigned levelmin_TF = pcf_->get_value_safe<unsigned>("setup","levelmin_TF",levelmin);
constr_level_ = pcf_->get_value_safe<unsigned>("constraints","level",levelmin_TF);
constr_level_ = std::max(constr_level_,levelmin_TF);
double omegam = pcf_->get_value<double>("cosmology","Omega_m");
double rhom = omegam*2.77519737e11; //... mean matter density in Msun/Mpc^3
//... use EdS density for estimation
//double rhom = 2.77519737e11;
std::map< std::string, constr_type> constr_type_map;
constr_type_map.insert( std::pair<std::string,constr_type>("halo",halo) );
constr_type_map.insert( std::pair<std::string,constr_type>("peak",peak) );
while(true)
{
char temp1[128];
std::string temp2;
snprintf(temp1,128,"constraint[%u].type",i);
if( cf.contains_key( "constraints", temp1 ) )
{
std::string str_type = cf.get_value<std::string>( "constraints", temp1 );
if( constr_type_map.find(str_type) == constr_type_map.end() )
throw std::runtime_error("Unknown constraint type!\n");
//... parse a new constraint
constraint new_c;
new_c.type = constr_type_map[ str_type ];
//... read position of constraint
snprintf(temp1,128,"constraint[%u].pos",i);
temp2 = cf.get_value<std::string>( "constraints", temp1 );
sscanf(temp2.c_str(), "%lf,%lf,%lf", &new_c.x, &new_c.y, &new_c.z);
if( new_c.type == halo)
{
//.. halo type constraints take mass and collapse redshift
snprintf(temp1,128,"constraint[%u].mass",i);
double mass = cf.get_value<double>( "constraints", temp1 );
snprintf(temp1,128,"constraint[%u].zform",i);
double zcoll = cf.get_value<double>( "constraints", temp1 );
new_c.Rg = pow((mass/pow(2.*M_PI,1.5)/rhom),1./3.);
new_c.sigma = 1.686/(pccalc_->get_growth_factor(1./(1.+zcoll))/pccalc_->get_growth_factor(1.0));
music::ilog.Print("sigma of constraint : %g", new_c.sigma );
new_c.sigma *=pccalc_->get_growth_factor(astart)/pccalc_->get_growth_factor(1.0);
music::ilog.Print("Constraint %d : halo with %g h-1 M_o",i,pow(2.*M_PI,1.5)*rhom*pow(new_c.Rg,3));
}
else if( new_c.type == peak )
{
//... peak type constraints take a scale and a peak height
//snprintf(temp1,128,"constraint[%u].Rg",i);
//new_c.Rg = cf.get_value<double>( "constraints", temp1 );
//double mass = pow(new_c.Rg,3.0)*rhom*pow(2.*M_PI,1.5);
snprintf(temp1,128,"constraint[%u].mass",i);
double mass = cf.get_value<double>( "constraints", temp1 );
new_c.Rg = pow((mass/pow(2.*M_PI,1.5)/rhom),1./3.);
double Rtophat = pow(mass/4.0*3.0/M_PI/rhom,1./3.);
snprintf(temp1,128,"constraint[%u].nu",i);
double nu = cf.get_value<double>( "constraints", temp1 );
std::vector<double> z,sigma;
compute_sigma_tophat( cf, ptf, Rtophat, z, sigma );
double zcoll = find_coll_z( z, sigma, nu );
//music::ilog.Print("Probable collapse redshift for constraint %d : z = %f @ M = %g", i, zcoll,mass );
compute_sigma_gauss( cf, ptf, new_c.Rg, z, sigma );
new_c.sigma = nu*sigma.back();
//music::ilog.Print("Constraint %d : peak with Rg=%g h-1 Mpc and nu = %g",i,new_c.Rg,new_c.sigma);
music::ilog.Print("Constraint %3d : peak",i);
music::ilog.Print(" M = %g h-1 M_o, nu = %.2f sigma", mass, nu );
music::ilog.Print(" estimated z_coll = %f, sigma = %f", zcoll, new_c.sigma );
}
new_c.Rg2 = new_c.Rg*new_c.Rg;
cset_.push_back( new_c );
}else
break;
++i;
}
music::ilog.Print("Found %d density constraint(s) to be obeyed.",cset_.size());
}
void constraint_set::wnoise_constr_corr( double dx, size_t nx, size_t ny, size_t nz, std::vector<double>& g0, matrix& cinv, complex_t* cw )
{
double lsub = nx*dx;
double dk = 2.0*M_PI/lsub, d3k=dk*dk*dk;
double pnorm = pcf_->get_value<double>("cosmology","pnorm");
double nspec = pcf_->get_value<double>("cosmology","nspec");
pnorm *= dplus0_*dplus0_;
size_t nconstr = cset_.size();
size_t nzp=nz/2+1;
/*for( size_t i=0; i<nconstr; ++i )
for( size_t j=0; j<nconstr; ++j )
{
std::cerr << "fact = " << (cset_[j].sigma-g0[j])*cinv(i,j) << "\n";
std::cerr << "g(j) = " << cset_[j].sigma << "\n";
std::cerr << "g0(j) = " << g0[j] << "\n";
std::cerr << "qinv = " << cinv(i,j) << "\n";
}
*/
double chisq = 0.0, chisq0 = 0.0;
for( size_t i=0; i<nconstr; ++i )
for( size_t j=0; j<nconstr; ++j )
{
chisq += cset_[i].sigma*cinv(i,j)*cset_[j].sigma;
chisq0 += g0[i]*cinv(i,j)*g0[j];
}
music::ilog.Print("Chi squared for the constraints:\n sampled = %f, desired = %f", chisq0, chisq );
std::vector<double> sigma(nconstr,0.0);
#pragma omp parallel
{
std::vector<double> sigma_loc(nconstr,0.0);
#pragma omp for
for( int ix=0; ix<(int)nx; ++ix )
{
double iix(ix); if( iix > nx/2 ) iix-=nx;
iix *= 2.0*M_PI/nx;
for( size_t iy=0; iy<ny; ++iy )
{
double iiy(iy); if( iiy > ny/2 ) iiy-=ny;
iiy *= 2.0*M_PI/nx;
for( size_t iz=0; iz<nzp; ++iz )
{
double iiz(iz);
iiz *= 2.0*M_PI/nx;
double k = sqrt(iix*iix+iiy*iiy+iiz*iiz)*(double)nx/lsub;
double T = ptf_->compute(k,delta_matter);
double Pk = pnorm*T*T*pow(k,nspec)*d3k;
size_t q = ((size_t)ix*ny+(size_t)iy)*nzp+(size_t)iz;
double fac = sqrt(Pk);
for( unsigned i=0; i<nconstr; ++i )
for( unsigned j=0; j<=i; ++j )
{
std::complex<double>
ci = eval_constr(i,iix,iiy,iiz),
cj = eval_constr(j,iix,iiy,iiz);
RE(cw[q]) += (cset_[j].sigma-g0[j])*cinv(i,j) * std::real(ci)*fac;
IM(cw[q]) += (cset_[j].sigma-g0[j])*cinv(i,j) * std::imag(ci)*fac;
if( i!=j )
{
RE(cw[q]) += (cset_[i].sigma-g0[i])*cinv(j,i) * std::real(cj)*fac;
IM(cw[q]) += (cset_[i].sigma-g0[i])*cinv(j,i) * std::imag(cj)*fac;
}
else
{
if( iz>0&&iz<nz/2 )
sigma_loc[i] += 2.0*std::real(std::conj(ci)*std::complex<double>(RE(cw[q]),IM(cw[q])))*fac;
else
sigma_loc[i] += std::real(std::conj(ci)*std::complex<double>(RE(cw[q]),IM(cw[q])))*fac;
}
}
}
}
}
//.. 'critical' section for the global reduction
#pragma omp critical
{
for(int i=0; i<(int)nconstr; ++i )
sigma[i] += sigma_loc[i];
}
}
for(int i=0; i<(int)nconstr; ++i )
music::ilog.Print("Constraint %3d : sigma = %+6f (%+6f)",i,sigma[i],cset_[i].sigma);
}
void constraint_set::wnoise_constr_corr( double dx, complex_t* cw, size_t nx, size_t ny, size_t nz, std::vector<double>& g0 )
{
size_t nconstr = cset_.size();
size_t nzp=nz/2+1;
g0.assign(nconstr,0.0);
double pnorm = pcf_->get_value<double>("cosmology","pnorm");
double nspec = pcf_->get_value<double>("cosmology","nspec");
pnorm *= dplus0_*dplus0_;
double lsub = nx*dx;
double dk = 2.0*M_PI/lsub, d3k=dk*dk*dk;
for( size_t i=0; i<nconstr; ++i )
{
double gg = 0.0;
#pragma omp parallel for reduction(+:gg)
for( int ix=0; ix<(int)nx; ++ix )
{
double iix(ix); if( iix > nx/2 ) iix-=nx;
iix *= 2.0*M_PI/nx;
for( size_t iy=0; iy<ny; ++iy )
{
double iiy(iy); if( iiy > ny/2 ) iiy-=ny;
iiy *= 2.0*M_PI/nx;
for( size_t iz=0; iz<nzp; ++iz )
{
double iiz(iz);
iiz *= 2.0*M_PI/nx;
double k = sqrt(iix*iix+iiy*iiy+iiz*iiz)*(double)nx/lsub;
double T = ptf_->compute(k,delta_matter);
std::complex<double> v(std::conj(eval_constr(i,iix,iiy,iiz)));
v *= sqrt(pnorm*pow(k,nspec)*T*T*d3k);
if( iz>0&&iz<nz/2)
v*=2;
size_t q = ((size_t)ix*ny+(size_t)iy)*nzp+(size_t)iz;
std::complex<double> ccw(RE(cw[q]),IM(cw[q]));
gg += std::real(v*ccw);
}
}
}
g0[i] = gg;
}
}
void constraint_set::icov_constr( double dx, size_t nx, size_t ny, size_t nz, matrix& cij )
{
size_t nconstr = cset_.size();
size_t nzp=nz/2+1;
double pnorm = pcf_->get_value<double>("cosmology","pnorm");
double nspec = pcf_->get_value<double>("cosmology","nspec");
pnorm *= dplus0_*dplus0_;
cij = matrix(nconstr,nconstr);
double lsub = nx*dx;
double dk = 2.0*M_PI/lsub, d3k=dk*dk*dk;
//... compute lower triangle of covariance matrix
//... and fill in upper triangle
for( unsigned i=0; i<nconstr; ++i )
for( unsigned j=0; j<=i; ++j )
{
float c1(0.0), c2(0.0);
#pragma omp parallel for reduction(+:c1,c2)
for( int ix=0; ix<(int)nx; ++ix )
{
double iix(ix); if( iix > nx/2 ) iix-=nx;
iix *= 2.0*M_PI/nx;
for( size_t iy=0; iy<ny; ++iy )
{
double iiy(iy); if( iiy > ny/2 ) iiy-=ny;
iiy *= 2.0*M_PI/nx;
for( size_t iz=0; iz<nzp; ++iz )
{
double iiz(iz);
iiz *= 2.0*M_PI/nx;
double k = sqrt(iix*iix+iiy*iiy+iiz*iiz)*(double)nx/lsub;
double T = ptf_->compute(k,delta_matter);
std::complex<double> v(std::conj(eval_constr(i,iix,iiy,iiz)));
v *= eval_constr(j,iix,iiy,iiz);
v *= pnorm * pow(k,nspec) * T * T * d3k;
if( iz>0&&iz<nz/2)
v*=2;
c1 += std::real(v);
c2 += std::real(std::conj(v));
}
}
}
cij(i,j) = c1;
cij(j,i) = c2;
}
//... invert convariance matrix
cij.invert();
}