1
0
Fork 0
mirror of https://github.com/cosmo-sims/MUSIC.git synced 2024-09-11 07:53:43 +02:00

WIP added panphasia files. does not work yet

This commit is contained in:
Oliver Hahn 2023-02-11 18:49:50 -08:00
parent 4aeb06b1d5
commit 040324f346
5 changed files with 4858 additions and 204 deletions

View file

@ -71,6 +71,22 @@ file( GLOB PLUGINS
${PROJECT_SOURCE_DIR}/src/plugins/*.cc
)
# PANPHASIA
option(ENABLE_PANPHASIA "Enable PANPHASIA random number generator" ON)
if(ENABLE_PANPHASIA)
enable_language(Fortran)
if ("${CMAKE_Fortran_COMPILER_ID}" MATCHES "Intel")
set(CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -132 -implicit-none")
elseif("${CMAKE_Fortran_COMPILER_ID}" MATCHES "GNU")
set(CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -ffixed-line-length-132 -fimplicit-none")
endif()
list (APPEND SOURCES
${PROJECT_SOURCE_DIR}/ext/panphasia/panphasia_routines.f
${PROJECT_SOURCE_DIR}/ext/panphasia/generic_lecuyer.f90
)
# target_include_directories(${PRGNAME} PRIVATE ${PROJECT_SOURCE_DIR}/external/panphasia_ho)
endif(ENABLE_PANPHASIA)
add_executable(${PRGNAME} ${SOURCES} ${PLUGINS})
set_target_properties(${PRGNAME} PROPERTIES CXX_STANDARD 11)
@ -116,6 +132,10 @@ if(TIRPC_FOUND)
target_compile_options(${PRGNAME} PRIVATE "-DHAVE_TIRPC")
endif(TIRPC_FOUND)
if(ENABLE_PANPHASIA)
target_compile_options(${PRGNAME} PRIVATE "-DHAVE_PANPHASIA")
endif(ENABLE_PANPHASIA)
target_link_libraries(${PRGNAME} ${FFTW3_LIBRARIES})
target_include_directories(${PRGNAME} PRIVATE ${FFTW3_INCLUDE_DIRS})

View file

@ -0,0 +1,683 @@
!=====================================================================================c
!
! The code below was written by: Stephen Booth
! Edinburgh Parallel Computing Centre
! The University of Edinburgh
! JCMB
! Mayfield Road
! Edinburgh EH9 3JZ
! United Kingdom
!
! This file is part of the software made public in
! Jenkins and Booth 2013 - arXiv:1306.XXXX
!
! The software computes the Panphasia Gaussian white noise field
! realisation described in detail in Jenkins 2013 - arXiv:1306.XXXX
!
!
!
! This software is free, subject to a agreeing licence conditions:
!
!
! (i) you will publish the phase descriptors and reference Jenkins (13)
! for any new simulations that use Panphasia phases. You will pass on this
! condition to others for any software or data you make available publically
! or privately that makes use of Panphasia.
!
! (ii) that you will ensure any publications using results derived from Panphasia
! will be submitted as a final version to arXiv prior to or coincident with
! publication in a journal.
!
!
! (iii) that you report any bugs in this software as soon as confirmed to
! A.R.Jenkins@durham.ac.uk
!
! (iv) that you understand that this software comes with no warranty and that is
! your responsibility to ensure that it is suitable for the purpose that
! you intend.
!
!=====================================================================================c
!{{{Rand_base (define kind types)
MODULE Rand_base
! This module just declares the base types
! we may have to edit this to match to the target machine
! we really need a power of 2 selected int kind in fortran-95 we could
! do this with a PURE function I think.
!
! 10 decimal digits will hold 2^31
!
INTEGER, PARAMETER :: Sint = SELECTED_INT_KIND(9)
! INTEGER, PARAMETER :: Sint = SELECTED_INT_KIND(10)
! INTEGER, PARAMETER :: Sint = 4
!
! 18-19 decimal digits will hold 2^63
! but all 19 digit numbers require 2^65 :-(
!
INTEGER, PARAMETER :: Dint = SELECTED_INT_KIND(17)
! INTEGER, PARAMETER :: Dint = SELECTED_INT_KIND(18)
! INTEGER, PARAMETER :: Dint = 8
! type for index counters must hold Nstore
INTEGER, PARAMETER :: Ctype = SELECTED_INT_KIND(3)
END MODULE Rand_base
!}}}
!{{{Rand_int (random integers mod 2^31-1)
MODULE Rand_int
USE Rand_base
IMPLICIT NONE
! The general approach of this module is two have
! two types Sint and Dint
!
! Sint should have at least 31 bits
! dint shouldhave at least 63
!{{{constants
INTEGER(KIND=Ctype), PARAMETER :: Nstate=5_Ctype
INTEGER(KIND=Ctype), PRIVATE, PARAMETER :: Nbatch=128_Ctype
INTEGER(KIND=Ctype), PRIVATE, PARAMETER :: Nstore=Nstate+Nbatch
INTEGER(KIND=Sint), PRIVATE, PARAMETER :: M = 2147483647_Sint
INTEGER(KIND=Dint), PRIVATE, PARAMETER :: Mask = 2147483647_Dint
INTEGER(KIND=Dint), PRIVATE, PARAMETER :: A1 = 107374182_Dint
INTEGER(KIND=Dint), PRIVATE, PARAMETER :: A5 = 104480_Dint
LOGICAL, PARAMETER :: Can_step_int=.TRUE.
LOGICAL, PARAMETER :: Can_reverse_int=.TRUE.
!}}}
!{{{Types
!
! This type holds the state of the generator
!
!{{{TYPE RAND_state
TYPE RAND_state
PRIVATE
INTEGER(KIND=Sint) :: state(Nstore)
! do we need to re-fill state table this is reset when we initialise state.
LOGICAL :: need_fill
! position of the next state variable to output
INTEGER(KIND=Ctype) :: pos
END TYPE RAND_state
!}}}
!
! This type defines the offset type used for stepping.
!
!{{{TYPE RAND_offset
TYPE RAND_offset
PRIVATE
INTEGER(KIND=Sint) :: poly(Nstate)
END TYPE RAND_offset
!}}}
!}}}
!{{{interface and overloads
!
! Allow automatic conversion between integers and offsets
!
INTERFACE ASSIGNMENT(=)
MODULE PROCEDURE Rand_set_offset
MODULE PROCEDURE Rand_load
MODULE PROCEDURE Rand_save
MODULE PROCEDURE Rand_seed
END INTERFACE
INTERFACE OPERATOR(+)
MODULE PROCEDURE Rand_add_offset
END INTERFACE
INTERFACE OPERATOR(*)
MODULE PROCEDURE Rand_mul_offset
END INTERFACE
!
! overload + as the boost/stepping operator
!
INTERFACE OPERATOR(+)
MODULE PROCEDURE Rand_step
MODULE PROCEDURE Rand_boost
END INTERFACE
!}}}
!{{{PUBLIC/PRIVATE
PRIVATE reduce,mod_saxpy,mod_sdot,p_saxpy,p_sdot,poly_mult
PRIVATE poly_square, poly_power
PRIVATE fill_state, repack_state
PUBLIC Rand_sint, Rand_sint_vec
PUBLIC Rand_save, Rand_load
PUBLIC Rand_set_offset, Rand_add_offset, Rand_mul_offset
PUBLIC Rand_step, Rand_boost, Rand_seed
!}}}
CONTAINS
!{{{Internals
!{{{RECURSIVE FUNCTION reduce(A)
RECURSIVE FUNCTION reduce(A)
!
! Take A Dint and reduce to Sint MOD M
!
INTEGER(KIND=Dint), INTENT(IN) :: A
INTEGER(KIND=Sint) reduce
INTEGER(KIND=Dint) tmp
tmp = A
DO WHILE( ISHFT(tmp, -31) .GT. 0 )
tmp = IAND(tmp,Mask) + ISHFT(tmp, -31)
END DO
IF( tmp .GE. M ) THEN
reduce = tmp - M
ELSE
reduce = tmp
END IF
END FUNCTION reduce
!}}}
!{{{RECURSIVE SUBROUTINE fill_state(x)
RECURSIVE SUBROUTINE fill_state(x)
TYPE(RAND_state), INTENT(INOUT) :: x
INTEGER(KIND=Ctype) i
INTRINSIC IAND, ISHFT
INTEGER(KIND=Dint) tmp
DO i=Nstate+1,Nstore
tmp = (x%state(i-5) * A5) + (x%state(i-1)*A1)
!
! now reduce down to mod M efficiently
! really hope the compiler in-lines this
!
! x%state(i) = reduce(tmp)
DO WHILE( ISHFT(tmp, -31) .GT. 0 )
tmp = IAND(tmp,Mask) + ISHFT(tmp, -31)
END DO
IF( tmp .GE. M ) THEN
x%state(i) = tmp - M
ELSE
x%state(i) = tmp
END IF
END DO
x%need_fill = .FALSE.
END SUBROUTINE fill_state
!}}}
!{{{RECURSIVE SUBROUTINE repack_state(x)
RECURSIVE SUBROUTINE repack_state(x)
TYPE(RAND_state), INTENT(INOUT) :: x
INTEGER(KIND=Ctype) i
DO i=1,Nstate
x%state(i) = x%state(i+x%pos-(Nstate+1))
END DO
x%pos = Nstate + 1
x%need_fill = .TRUE.
END SUBROUTINE repack_state
!}}}
!{{{RECURSIVE SUBROUTINE mod_saxpy(y,a,x)
RECURSIVE SUBROUTINE mod_saxpy(y,a,x)
INTEGER(KIND=Ctype) i
INTEGER(KIND=Sint) y(Nstate)
INTEGER(KIND=Sint) a
INTEGER(KIND=Sint) x(Nstate)
INTEGER(KIND=Dint) tx,ty,ta
IF( a .EQ. 0_Sint ) RETURN
! We use KIND=Dint temporaries here to ensure
! that we don't overflow in the expression
ta = a
DO i=1,Nstate
ty=y(i)
tx=x(i)
y(i) = reduce(ty + ta * tx)
END DO
END SUBROUTINE
!}}}
!{{{RECURSIVE SUBROUTINE mod_sdot(res,x,y)
RECURSIVE SUBROUTINE mod_sdot(res,x,y)
INTEGER(KIND=Sint), INTENT(OUT) :: res
INTEGER(KIND=Sint), INTENT(IN) :: x(Nstate) , y(Nstate)
INTEGER(KIND=Dint) dx, dy, dtmp
INTEGER(KIND=Sint) tmp
INTEGER(KIND=Ctype) i
tmp = 0
DO i=1,Nstate
dx = x(i)
dy = y(i)
dtmp = tmp
tmp = reduce(dtmp + dx * dy)
END DO
res = tmp
END SUBROUTINE
!}}}
!{{{RECURSIVE SUBROUTINE p_saxpy(y,a)
RECURSIVE SUBROUTINE p_saxpy(y,a)
! Calculates mod_saxpy(y,a,P)
INTEGER(KIND=Sint), INTENT(INOUT) :: y(Nstate)
INTEGER(KIND=Sint), INTENT(IN) :: a
INTEGER(KIND=Dint) tmp, dy, da
dy = y(1)
da = a
tmp = dy + da*A5
y(1) = reduce(tmp)
dy = y(5)
da = a
tmp = dy + da*A1
y(5) = reduce(tmp)
END SUBROUTINE
!}}}
!{{{RECURSIVE SUBROUTINE p_sdot(res,n,x)
RECURSIVE SUBROUTINE p_sdot(res,x)
INTEGER(KIND=Sint), INTENT(OUT) :: res
INTEGER(KIND=Sint), INTENT(IN) :: x(Nstate)
INTEGER(KIND=Dint) dx1, dx5, dtmp
dx1 = x(1)
dx5 = x(5)
dtmp = A1*dx5 + A5*dx1
res = reduce(dtmp)
END SUBROUTINE
!}}}
!{{{RECURSIVE SUBROUTINE poly_mult(a,b)
RECURSIVE SUBROUTINE poly_mult(a,b)
INTEGER(KIND=Sint), INTENT(INOUT) :: a(Nstate)
INTEGER(KIND=Sint), INTENT(IN) :: b(Nstate)
INTEGER(KIND=Sint) tmp((2*Nstate) - 1)
INTEGER(KIND=Ctype) i
tmp = 0_Sint
DO i=1,Nstate
CALL mod_saxpy(tmp(i:Nstate+i-1),a(i), b)
END DO
DO i=(2*Nstate)-1, Nstate+1, -1
CALL P_SAXPY(tmp(i-Nstate:i-1),tmp(i))
END DO
a = tmp(1:Nstate)
END SUBROUTINE
!}}}
!{{{RECURSIVE SUBROUTINE poly_square(a)
RECURSIVE SUBROUTINE poly_square(a)
INTEGER(KIND=Sint), INTENT(INOUT) :: a(Nstate)
INTEGER(KIND=Sint) tmp((2*Nstate) - 1)
INTEGER(KIND=Ctype) i
tmp = 0_Sint
DO i=1,Nstate
CALL mod_saxpy(tmp(i:Nstate+i-1),a(i), a)
END DO
DO i=(2*Nstate)-1, Nstate+1, -1
CALL P_SAXPY(tmp(i-Nstate:i-1),tmp(i))
END DO
a = tmp(1:Nstate)
END SUBROUTINE
!}}}
!{{{RECURSIVE SUBROUTINE poly_power(poly,n)
RECURSIVE SUBROUTINE poly_power(poly,n)
INTEGER(KIND=Sint), INTENT(INOUT) :: poly(Nstate)
INTEGER, INTENT(IN) :: n
INTEGER nn
INTEGER(KIND=Sint) x(Nstate), out(Nstate)
IF( n .EQ. 0 )THEN
poly = 0_Sint
poly(1) = 1_Sint
RETURN
ELSE IF( n .LT. 0 )THEN
poly = 0_Sint
RETURN
END IF
out = 0_sint
out(1) = 1_Sint
x = poly
nn = n
DO WHILE( nn .GT. 0 )
IF( MOD(nn,2) .EQ. 1 )THEN
call poly_mult(out,x)
END IF
nn = nn/2
IF( nn .GT. 0 )THEN
call poly_square(x)
END IF
END DO
poly = out
END SUBROUTINE poly_power
!}}}
!}}}
!{{{RECURSIVE SUBROUTINE Rand_seed( state, n )
RECURSIVE SUBROUTINE Rand_seed( state, n )
TYPE(Rand_state), INTENT(OUT) :: state
INTEGER, INTENT(IN) :: n
! initialise the genrator using a single integer
! fist initialise to an arbitrary state then boost by a multiple
! of a long distance
!
! state is moved forward by P^n steps
! we want this to be ok for seperating parallel sequences on MPP machines
! P is taken as a prime number as this should prevent strong correlations
! when the generators are operated in tight lockstep.
! equivalent points on different processors will also be related by a
! primative polynomial
! P is 2^48-59
TYPE(Rand_state) tmp
TYPE(Rand_offset), PARAMETER :: P = &
Rand_offset( (/ 1509238949_Sint ,2146167999_Sint ,1539340803_Sint , &
1041407428_Sint ,666274987_Sint /) )
CALL Rand_load( tmp, (/ 5, 4, 3, 2, 1 /) )
state = Rand_boost( tmp, Rand_mul_offset(P, n ))
END SUBROUTINE Rand_seed
!}}}
!{{{RECURSIVE SUBROUTINE Rand_load( state, input )
RECURSIVE SUBROUTINE Rand_load( state, input )
TYPE(RAND_state), INTENT(OUT) :: state
INTEGER, INTENT(IN) :: input(Nstate)
INTEGER(KIND=Ctype) i
state%state = 0_Sint
DO i=1,Nstate
state%state(i) = MOD(INT(input(i),KIND=Sint),M)
END DO
state%need_fill = .TRUE.
state%pos = Nstate + 1
END SUBROUTINE Rand_load
!}}}
!{{{RECURSIVE SUBROUTINE Rand_save( save_vec,state )
RECURSIVE SUBROUTINE Rand_save( save_vec, x )
INTEGER, INTENT(OUT) :: save_vec(Nstate)
TYPE(RAND_state), INTENT(IN) :: x
INTEGER(KIND=Ctype) i
DO i=1,Nstate
save_vec(i) = x%state(x%pos-(Nstate+1) + i)
END DO
END SUBROUTINE Rand_save
!}}}
!{{{RECURSIVE SUBROUTINE Rand_set_offset( offset, n )
RECURSIVE SUBROUTINE Rand_set_offset( offset, n )
TYPE(Rand_offset), INTENT(OUT) :: offset
INTEGER, INTENT(IN) :: n
offset%poly = 0_Sint
IF ( n .GE. 0 ) THEN
offset%poly(2) = 1_Sint
call poly_power(offset%poly,n)
ELSE
!
! This is X^-1
!
offset%poly(4) = 858869107_Sint
offset%poly(5) = 1840344978_Sint
call poly_power(offset%poly,-n)
END IF
END SUBROUTINE Rand_set_offset
!}}}
!{{{TYPE(Rand_offset) RECURSIVE FUNCTION Rand_add_offset( a, b )
TYPE(Rand_offset) RECURSIVE FUNCTION Rand_add_offset( a, b )
TYPE(Rand_offset), INTENT(IN) :: a, b
Rand_add_offset = a
CALL poly_mult(Rand_add_offset%poly,b%poly)
RETURN
END FUNCTION Rand_add_offset
!}}}
!{{{TYPE(Rand_offset) RECURSIVE FUNCTION Rand_mul_offset( a, n )
TYPE(Rand_offset) RECURSIVE FUNCTION Rand_mul_offset( a, n )
TYPE(Rand_offset), INTENT(IN) :: a
INTEGER, INTENT(IN) :: n
Rand_mul_offset = a
CALL poly_power(Rand_mul_offset%poly,n)
RETURN
END FUNCTION Rand_mul_offset
!}}}
!{{{RECURSIVE FUNCTION Rand_boost(x, offset)
RECURSIVE FUNCTION Rand_boost(x, offset)
TYPE(Rand_state) Rand_boost
TYPE(Rand_state), INTENT(IN) :: x
TYPE(Rand_offset), INTENT(IN) :: offset
INTEGER(KIND=Sint) tmp(2*Nstate-1), res(Nstate)
INTEGER(KIND=Ctype) i
DO i=1,Nstate
tmp(i) = x%state(x%pos-(Nstate+1) + i)
END DO
tmp(Nstate+1:) = 0_Sint
DO i=1,Nstate-1
call P_SDOT(tmp(i+Nstate),tmp(i:Nstate+i-1))
END DO
DO i=1,Nstate
call mod_sdot(res(i),offset%poly,tmp(i:Nstate+i-1))
END DO
Rand_boost%state = 0_Sint
DO i=1,Nstate
Rand_boost%state(i) = res(i)
END DO
Rand_boost%need_fill = .TRUE.
Rand_boost%pos = Nstate + 1
END FUNCTION Rand_boost
!}}}
!{{{RECURSIVE FUNCTION Rand_step(x, n)
RECURSIVE FUNCTION Rand_step(x, n)
TYPE(Rand_state) Rand_step
TYPE(RAND_state), INTENT(IN) :: x
INTEGER, INTENT(IN) :: n
TYPE(Rand_offset) tmp
CALL Rand_set_offset(tmp,n)
Rand_step=Rand_boost(x,tmp)
END FUNCTION
!}}}
!{{{RECURSIVE FUNCTION Rand_sint(x)
RECURSIVE FUNCTION Rand_sint(x)
TYPE(RAND_state), INTENT(INOUT) :: x
INTEGER(KIND=Sint) Rand_sint
IF( x%pos .GT. Nstore )THEN
CALL repack_state(x)
END IF
IF( x%need_fill ) CALL fill_state(x)
Rand_sint = x%state(x%pos)
x%pos = x%pos + 1
RETURN
END FUNCTION Rand_sint
!}}}
!{{{RECURSIVE SUBROUTINE Rand_sint_vec(iv,x)
RECURSIVE SUBROUTINE Rand_sint_vec(iv,x)
INTEGER(KIND=Sint), INTENT(OUT) :: iv(:)
TYPE(RAND_state), INTENT(INOUT) :: x
INTEGER left,start, chunk, i
start=1
left=SIZE(iv)
DO WHILE( left .GT. 0 )
IF( x%pos .GT. Nstore )THEN
CALL repack_state(x)
END IF
IF( x%need_fill ) CALL fill_state(x)
chunk = MIN(left,Nstore-x%pos+1)
DO i=0,chunk-1
iv(start+i) = x%state(x%pos+i)
END DO
start = start + chunk
x%pos = x%pos + chunk
left = left - chunk
END DO
RETURN
END SUBROUTINE Rand_sint_vec
!}}}
END MODULE Rand_int
!}}}
!{{{Rand (use Rand_int to make random reals)
MODULE Rand
USE Rand_int
IMPLICIT NONE
!{{{Parameters
INTEGER, PARAMETER :: RAND_kind1 = SELECTED_REAL_KIND(10)
INTEGER, PARAMETER :: RAND_kind2 = SELECTED_REAL_KIND(6)
INTEGER, PARAMETER, PRIVATE :: Max_block=100
INTEGER(KIND=Sint), PRIVATE, PARAMETER :: M = 2147483647
REAL(KIND=RAND_kind1), PRIVATE, PARAMETER :: INVMP1_1 = ( 1.0_RAND_kind1 / 2147483647.0_RAND_kind1 )
REAL(KIND=RAND_kind2), PRIVATE, PARAMETER :: INVMP1_2 = ( 1.0_RAND_kind2 / 2147483647.0_RAND_kind2 )
LOGICAL, PARAMETER :: Can_step = Can_step_int
LOGICAL, PARAMETER :: Can_reverse = Can_reverse_int
!}}}
PUBLIC Rand_real
INTERFACE Rand_real
MODULE PROCEDURE Rand_real1
MODULE PROCEDURE Rand_real2
MODULE PROCEDURE Rand_real_vec1
MODULE PROCEDURE Rand_real_vec2
END INTERFACE
CONTAINS
!{{{RECURSIVE SUBROUTINE Rand_real1(y,x)
RECURSIVE SUBROUTINE Rand_real1(y,x)
REAL(KIND=RAND_kind1), INTENT(OUT) :: y
TYPE(RAND_state), INTENT(INOUT) :: x
INTEGER(KIND=Sint) Z
Z = Rand_sint(x)
IF (Z .EQ. 0) Z = M
y = ((Z-0.5d0)*INVMP1_1)
RETURN
END SUBROUTINE Rand_real1
!}}}
!{{{RECURSIVE SUBROUTINE Rand_real2(y,x)
RECURSIVE SUBROUTINE Rand_real2(y,x)
REAL(KIND=RAND_kind2), INTENT(OUT) :: y
TYPE(RAND_state), INTENT(INOUT) :: x
INTEGER(KIND=Sint) Z
Z = Rand_sint(x)
IF (Z .EQ. 0) Z = M
y = ((Z-0.5d0)*INVMP1_1) ! generate in double and truncate.
RETURN
END SUBROUTINE Rand_real2
!}}}
!{{{RECURSIVE SUBROUTINE Rand_real_vec1(rv,x)
RECURSIVE SUBROUTINE Rand_real_vec1(rv,x)
TYPE(RAND_state), INTENT(INOUT) :: x
REAL(KIND=RAND_kind1) rv(:)
INTEGER left,start, chunk, i
INTEGER(KIND=Sint) Z
INTEGER(KIND=Sint) temp(MIN(SIZE(rv),Max_block))
start=0
left=SIZE(rv)
DO WHILE( left .GT. 0 )
chunk = MIN(left,Max_block)
CALL Rand_sint_vec(temp(1:chunk),x)
DO i=1,chunk
Z = temp(i)
IF (Z .EQ. 0) Z = M
rv(start+i) = (Z-0.5d0)*INVMP1_1
END DO
start = start + chunk
left = left - chunk
END DO
RETURN
END SUBROUTINE Rand_real_vec1
!}}}
!{{{RECURSIVE SUBROUTINE Rand_real_vec2(rv,x)
RECURSIVE SUBROUTINE Rand_real_vec2(rv,x)
TYPE(RAND_state), INTENT(INOUT) :: x
REAL(KIND=RAND_kind2) rv(:)
INTEGER left,start, chunk, i
INTEGER(KIND=Sint) Z
INTEGER(KIND=Sint) temp(MIN(SIZE(rv),Max_block))
start=0
left=SIZE(rv)
DO WHILE( left .GT. 0 )
chunk = MIN(left,Max_block)
CALL Rand_sint_vec(temp(1:chunk),x)
DO i=1,chunk
Z = temp(i)
IF (Z .EQ. 0) Z = M
rv(start+i) = (Z-0.5d0)*INVMP1_2
END DO
start = start + chunk
left = left - chunk
END DO
RETURN
END SUBROUTINE Rand_real_vec2
!}}}
END MODULE Rand
!}}}
!{{{test program
! PROGRAM test_random
! use Rand
! TYPE(RAND_state) x
! REAL y
! CALL Rand_load(x,(/5,4,3,2,1/))
! DO I=0,10
! CALL Rand_real(y,x)
! WRITE(*,10) I,y
! END DO
!
!10 FORMAT(I10,E25.16)
!
! END
! 0 0.5024326127022505E-01
! 1 0.8260946767404675E-01
! 2 0.2123264316469431E-01
! 3 0.6926658791489899E+00
! 4 0.2076155943796039E+00
! 5 0.4327449947595596E-01
! 6 0.2204052871093154E-01
! 7 0.1288446951657534E+00
! 8 0.4859915426932275E+00
! 9 0.5721384193748236E-01
! 10 0.7996825082227588E+00
!
!}}}

File diff suppressed because it is too large Load diff

View file

@ -1,204 +0,0 @@
#ifndef __FFT_OPERATORS_HH
#define __FFT_OPERATORS_HH
struct fft_interp{
template< typename m1, typename m2 >
void interpolate( m1& V, m2& v, bool fourier_splice = false ) const
{
int oxc = V.offset(0), oyc = V.offset(1), ozc = V.offset(2);
int oxf = v.offset(0), oyf = v.offset(1), ozf = v.offset(2);
size_t nxf = v.size(0), nyf = v.size(1), nzf = v.size(2), nzfp = nzf+2;
// cut out piece of coarse grid that overlaps the fine:
assert( nxf%2==0 && nyf%2==0 && nzf%2==0 );
size_t nxc = nxf/2, nyc = nyf/2, nzc = nzf/2, nzcp = nzf/2+2;
fftw_real *rcoarse = new fftw_real[ nxc * nyc * nzcp ];
fftw_complex *ccoarse = reinterpret_cast<fftw_complex*> (rcoarse);
fftw_real *rfine = new fftw_real[ nxf * nyf * nzfp];
fftw_complex *cfine = reinterpret_cast<fftw_complex*> (rfine);
#pragma omp parallel for
for( int i=0; i<(int)nxc; ++i )
for( int j=0; j<(int)nyc; ++j )
for( int k=0; k<(int)nzc; ++k )
{
size_t q = ((size_t)i*nyc+(size_t)j)*nzcp+(size_t)k;
rcoarse[q] = V( oxf+i, oyf+j, ozf+k );
}
if( fourier_splice )
{
#pragma omp parallel for
for( int i=0; i<(int)nxf; ++i )
for( int j=0; j<(int)nyf; ++j )
for( int k=0; k<(int)nzf; ++k )
{
size_t q = ((size_t)i*nyf+(size_t)j)*nzfp+(size_t)k;
rfine[q] = v(i,j,k);
}
}
else
{
#pragma omp parallel for
for( size_t i=0; i<nxf*nyf*nzfp; ++i )
rfine[i] = 0.0;
}
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_plan
pc = fftwf_plan_dft_r2c_3d( nxc, nyc, nzc, rcoarse, ccoarse, FFTW_ESTIMATE),
pf = fftwf_plan_dft_r2c_3d( nxf, nyf, nzf, rfine, cfine, FFTW_ESTIMATE),
ipf = fftwf_plan_dft_c2r_3d( nxf, nyf, nzf, cfine, rfine, FFTW_ESTIMATE);
fftwf_execute( pc );
if( fourier_splice )
fftwf_execute( pf );
#else
fftw_plan
pc = fftw_plan_dft_r2c_3d( nxc, nyc, nzc, rcoarse, ccoarse, FFTW_ESTIMATE),
pf = fftw_plan_dft_r2c_3d( nxf, nyf, nzf, rfine, cfine, FFTW_ESTIMATE),
ipf = fftw_plan_dft_c2r_3d( nxf, nyf, nzf, cfine, rfine, FFTW_ESTIMATE);
fftw_execute( pc );
if( fourier_splice )
fftwf_execute( pf );
#endif
#else
rfftwnd_plan
pc = rfftw3d_create_plan( nxc, nyc, nzc, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE|FFTW_IN_PLACE),
pf = rfftw3d_create_plan( nxf, nyf, nzf, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE|FFTW_IN_PLACE),
ipf = rfftw3d_create_plan( nxf, nyf, nzf, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE|FFTW_IN_PLACE);
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_real_to_complex( omp_get_max_threads(), pc, rcoarse, NULL );
if( fourier_splice )
rfftwnd_threads_one_real_to_complex( omp_get_max_threads(), pf, rfine, NULL );
#else
rfftwnd_one_real_to_complex( pc, rcoarse, NULL );
if( fourier_splice )
rfftwnd_one_real_to_complex( pf, rfine, NULL );
#endif
#endif
/*************************************************/
//.. perform actual interpolation
double fftnorm = 1.0/((double)nxf*(double)nyf*(double)nzf);
double sqrt8 = sqrt(8.0);
// 0 0
#pragma omp parallel for
for( int i=0; i<(int)nxc/2+1; i++ )
for( int j=0; j<(int)nyc/2+1; j++ )
for( int k=0; k<(int)nzc/2+1; k++ )
{
int ii(i),jj(j),kk(k);
size_t qc,qf;
qc = ((size_t)i*(size_t)nyc+(size_t)j)*(nzc/2+1)+(size_t)k;
qf = ((size_t)ii*(size_t)nyf+(size_t)jj)*(nzf/2+1)+(size_t)kk;
RE(cfine[qf]) = sqrt8*RE(ccoarse[qc]);
IM(cfine[qf]) = sqrt8*IM(ccoarse[qc]);
}
// 1 0
#pragma omp parallel for
for( int i=nxc/2; i<(int)nxc; i++ )
for( int j=0; j<(int)nyc/2+1; j++ )
for( int k=0; k<(int)nzc/2+1; k++ )
{
int ii(i+nx/2),jj(j),kk(k);
size_t qc,qf;
qc = ((size_t)i*(size_t)nyc+(size_t)j)*(nzc/2+1)+(size_t)k;
qf = ((size_t)ii*(size_t)ny+(size_t)jj)*(nz/2+1)+(size_t)kk;
RE(cfine[qf]) = sqrt8*RE(ccoarse[qc]);
IM(cfine[qf]) = sqrt8*IM(ccoarse[qc]);
//if( k==0 & (i==(int)nxc/2 || j==(int)nyc/2) )
// IM(cfine[qf]) *= -1.0;
}
// 0 1
#pragma omp parallel for
for( int i=0; i<(int)nxc/2+1; i++ )
for( int j=nyc/2; j<(int)nyc; j++ )
for( int k=0; k<(int)nzc/2+1; k++ )
{
int ii(i),jj(j+ny/2),kk(k);
size_t qc,qf;
qc = ((size_t)i*(size_t)nyc+(size_t)j)*(nzc/2+1)+(size_t)k;
qf = ((size_t)ii*(size_t)ny+(size_t)jj)*(nz/2+1)+(size_t)kk;
RE(cfine[qf]) = sqrt8*RE(ccoarse[qc]);
IM(cfine[qf]) = sqrt8*IM(ccoarse[qc]);
//if( k==0 && (i==(int)nxc/2 || j==(int)nyc/2) )
// IM(cfine[qf]) *= -1.0;
}
// 1 1
#pragma omp parallel for
for( int i=nxc/2; i<(int)nxc; i++ )
for( int j=nyc/2; j<(int)nyc; j++ )
for( int k=0; k<(int)nzc/2+1; k++ )
{
int ii(i+nx/2),jj(j+ny/2),kk(k);
size_t qc,qf;
qc = ((size_t)i*(size_t)nyc+(size_t)j)*(nzc/2+1)+(size_t)k;
qf = ((size_t)ii*(size_t)nyf+(size_t)jj)*(nzf/2+1)+(size_t)kk;
RE(cfine[qf]) = sqrt8*RE(ccoarse[qc]);
IM(cfine[qf]) = sqrt8*IM(ccoarse[qc]);
}
delete[] rcoarse;
/*************************************************/
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_execute( ipf );
fftwf_destroy_plan(pf);
fftwf_destroy_plan(pc);
fftwf_destroy_plan(ipf);
#else
fftw_execute( ipf );
fftw_destroy_plan(pf);
fftw_destroy_plan(pc);
fftw_destroy_plan(ipf);
#endif
#else
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), ipf, cfine, NULL );
#else
rfftwnd_one_complex_to_real( ipf, cfine, NULL );
#endif
fftwnd_destroy_plan(pf);
fftwnd_destroy_plan(pc);
fftwnd_destroy_plan(ipf);
#endif
// copy back and normalize
#pragma omp parallel for
for( int i=0; i<(int)nxf; ++i )
for( int j=0; j<(int)nyf; ++j )
for( int k=0; k<(int)nzf; ++k )
{
size_t q = ((size_t)i*nyf+(size_t)j)*nzfp+(size_t)k;
v(i,j,k) = rfine[q] * fftnorm;
}
delete[] rcoarse;
delete[] rfine;
}
};
#endif //__FFT_OPERATORS_HH

View file

@ -0,0 +1,821 @@
#ifdef HAVE_PANPHASIA
#include "random.hh"
#include <cctype>
#include <cstring>
#include <stdint.h>
#include "densities.hh"
#include "HDF_IO.hh"
const int maxdim = 60, maxlev = 50, maxpow = 3 * maxdim;
typedef int rand_offset_[5];
typedef struct {
int state[133]; // Nstore = Nstate (=5) + Nbatch (=128)
int need_fill;
int pos;
} rand_state_;
/* pan_state_ struct -- corresponds to respective fortran module in panphasia_routines.f
* data structure that contains all panphasia state variables
* it needs to get passed between the fortran routines to enable
* thread-safe execution.
*/
typedef struct {
int base_state[5], base_lev_start[5][maxdim + 1];
rand_offset_ poweroffset[maxpow + 1], superjump;
rand_state_ current_state[maxpow + 2];
int layer_min, layer_max, indep_field;
long long xorigin_store[2][2][2], yorigin_store[2][2][2], zorigin_store[2][2][2];
int lev_common, layer_min_store, layer_max_store;
long long ix_abs_store, iy_abs_store, iz_abs_store, ix_per_store, iy_per_store, iz_per_store, ix_rel_store,
iy_rel_store, iz_rel_store;
double exp_coeffs[8][8][maxdim + 2];
long long xcursor[maxdim + 1], ycursor[maxdim + 1], zcursor[maxdim + 1];
int ixshift[2][2][2], iyshift[2][2][2], izshift[2][2][2];
double cell_data[9][8];
int ixh_last, iyh_last, izh_last;
int init;
int init_cell_props;
int init_lecuyer_state;
long long p_xcursor[62], p_ycursor[62], p_zcursor[62];
} pan_state_;
extern "C" {
void start_panphasia_(pan_state_ *lstate, const char *descriptor, int *ngrid, int *bverbose);
void parse_descriptor_(const char *descriptor, int16_t *l, int32_t *ix, int32_t *iy, int32_t *iz, int16_t *side1,
int16_t *side2, int16_t *side3, int32_t *check_int, char *name);
void panphasia_cell_properties_(pan_state_ *lstate, int *ixcell, int *iycell, int *izcell, double *cell_prop);
void adv_panphasia_cell_properties_(pan_state_ *lstate, int *ixcell, int *iycell, int *izcell, int *layer_min,
int *layer_max, int *indep_field, double *cell_prop);
void set_phases_and_rel_origin_(pan_state_ *lstate, const char *descriptor, int *lev, long long *ix_rel,
long long *iy_rel, long long *iz_rel, int *VERBOSE);
/*void set_local_box_( pan_state_ *lstate, int lev, int8_t ix_abs, int8_t iy_abs, int8_t iz_abs,
int8_t ix_per, int8_t iy_per, int8_t iz_per, int8_t ix_rel, int8_t iy_rel,
int8_t iz_rel, int wn_level_base, int8_t check_rand, char *phase_name, int MYID);*/
/*extern struct {
int layer_min, layer_max, hoswitch;
}oct_range_;
*/
}
class RNG_panphasia : public RNG_plugin {
private:
void forward_transform_field(real_t *field, int n0, int n1, int n2);
void forward_transform_field(real_t *field, int n) { forward_transform_field(field, n, n, n); }
void backward_transform_field(real_t *field, int n0, int n1, int n2);
void backward_transform_field(real_t *field, int n) { backward_transform_field(field, n, n, n); }
protected:
std::string descriptor_string_;
int num_threads_;
int levelmin_, levelmin_final_, levelmax_, ngrid_;
bool incongruent_fields_;
double inter_grid_phase_adjustment_;
// double translation_phase_;
pan_state_ *lstate;
int grid_p_,grid_m_;
double grid_rescale_fac_;
int coordinate_system_shift_[3];
int ix_abs_[3], ix_per_[3], ix_rel_[3], level_p_, lextra_;
const refinement_hierarchy *prefh_;
struct panphasia_descriptor {
int16_t wn_level_base;
int32_t i_xorigin_base, i_yorigin_base, i_zorigin_base;
int16_t i_base, i_base_y, i_base_z;
int32_t check_rand;
std::string name;
explicit panphasia_descriptor(std::string dstring) {
char tmp[100];
memset(tmp, ' ', 100);
parse_descriptor_(dstring.c_str(), &wn_level_base, &i_xorigin_base, &i_yorigin_base, &i_zorigin_base, &i_base,
&i_base_y, &i_base_z, &check_rand, tmp);
for (int i = 0; i < 100; i++)
if (tmp[i] == ' ') {
tmp[i] = '\0';
break;
}
name = tmp;
name.erase(std::remove(name.begin(), name.end(), ' '), name.end());
}
};
void clear_panphasia_thread_states(void) {
for (int i = 0; i < num_threads_; ++i) {
lstate[i].init = 0;
lstate[i].init_cell_props = 0;
lstate[i].init_lecuyer_state = 0;
}
}
// greatest common divisor
int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
// least common multiple
int lcm(int a, int b) { return abs(a * b) / gcd(a, b); }
// Two or largest power of 2 less than the argument
int largest_power_two_lte(int b) {
int a = 1;
if (b<=a) return a;
while (2*a < b) a = 2*a;
return a;
}
panphasia_descriptor *pdescriptor_;
public:
explicit RNG_panphasia(config_file &cf) : RNG_plugin(cf) {
descriptor_string_ = pcf_->getValue<std::string>("random", "descriptor");
#ifdef _OPENMP
num_threads_ = omp_get_max_threads();
#else
num_threads_ = 1;
#endif
// create independent state descriptions for each thread
lstate = new pan_state_[num_threads_];
// parse the descriptor for its properties
pdescriptor_ = new panphasia_descriptor(descriptor_string_);
LOGINFO("PANPHASIA: descriptor \'%s\' is base %d,", pdescriptor_->name.c_str(), pdescriptor_->i_base);
// write panphasia base size into config file for the grid construction
// as the gridding unit we use the least common multiple of 2 and i_base
std::stringstream ss;
//ARJ ss << lcm(2, pdescriptor_->i_base);
//ss << two_or_largest_power_two_less_than(pdescriptor_->i_base);//ARJ
ss << 2; //ARJ - set gridding unit to two
pcf_->insertValue("setup", "gridding_unit", ss.str());
ss.str(std::string());
ss << pdescriptor_->i_base ;
pcf_->insertValue("random","base_unit", ss.str());
}
void initialize_for_grid_structure(const refinement_hierarchy &refh) {
prefh_ = &refh;
levelmin_ = prefh_->levelmin();
levelmin_final_ = pcf_->getValue<unsigned>("setup", "levelmin");
levelmax_ = prefh_->levelmax();
clear_panphasia_thread_states();
LOGINFO("PANPHASIA: running with %d threads", num_threads_);
// if ngrid is not a multiple of i_base, then we need to enlarge and then sample down
ngrid_ = 1 << levelmin_;
grid_p_ = pdescriptor_->i_base;
grid_m_ = largest_power_two_lte(grid_p_);
lextra_ = (log10((double)ngrid_ / (double)pdescriptor_->i_base) + 0.001) / log10(2.0);
int ratio = 1 << lextra_;
grid_rescale_fac_ = 1.0;
coordinate_system_shift_[0] = -pcf_->getValue<int>("setup", "shift_x");
coordinate_system_shift_[1] = -pcf_->getValue<int>("setup", "shift_y");
coordinate_system_shift_[2] = -pcf_->getValue<int>("setup", "shift_z");
incongruent_fields_ = false;
if (ngrid_ != ratio * pdescriptor_->i_base) {
incongruent_fields_ = true;
ngrid_ = 2 * ratio * pdescriptor_->i_base;
grid_rescale_fac_ = (double)ngrid_ / (1 << levelmin_);
LOGINFO("PANPHASIA: will use a higher resolution:\n"
" (%d -> %d) * 2**ref compatible with PANPHASIA\n"
" will Fourier interpolate after.",
grid_m_, grid_p_);
}
}
~RNG_panphasia() { delete[] lstate; }
void fill_grid(int level, DensityGrid<real_t> &R);
bool is_multiscale() const { return true; }
};
void RNG_panphasia::forward_transform_field(real_t *field, int nx, int ny, int nz) {
fftw_real *rfield = reinterpret_cast<fftw_real *>(field);
fftw_complex *cfield = reinterpret_cast<fftw_complex *>(field);
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_plan pf = fftwf_plan_dft_r2c_3d(nx, ny, nz, rfield, cfield, FFTW_ESTIMATE);
#else
fftw_plan pf = fftw_plan_dft_r2c_3d(nx, ny, nz, rfield, cfield, FFTW_ESTIMATE);
#endif
#else
rfftwnd_plan pf = rfftw3d_create_plan(nx, ny, nz, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE | FFTW_IN_PLACE);
#endif
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_execute(pf);
#else
fftw_execute(pf);
#endif
#else
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_real_to_complex(num_threads_, pf, rfield, NULL);
#else
rfftwnd_one_real_to_complex(pf, rfield, NULL);
#endif
#endif
}
void RNG_panphasia::backward_transform_field(real_t *field, int nx, int ny, int nz) {
fftw_real *rfield = reinterpret_cast<fftw_real *>(field);
fftw_complex *cfield = reinterpret_cast<fftw_complex *>(field);
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_plan ipf = fftwf_plan_dft_c2r_3d(nx, ny, nz, cfield, rfield, FFTW_ESTIMATE);
#else
fftw_plan ipf = fftw_plan_dft_c2r_3d(nx, ny, nz, cfield, rfield, FFTW_ESTIMATE);
#endif
#else
rfftwnd_plan ipf = rfftw3d_create_plan(nx, ny, nz, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE | FFTW_IN_PLACE);
#endif
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_execute(ipf);
#else
fftw_execute(ipf);
#endif
#else
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_complex_to_real(num_threads_, ipf, cfield, NULL);
#else
rfftwnd_one_complex_to_real(ipf, cfield, NULL);
#endif
#endif
}
#include <sys/time.h>
inline double get_wtime(void) {
#ifdef _OPENMP
return omp_get_wtime();
#else
return (double)clock() / CLOCKS_PER_SEC;
#endif
}
void RNG_panphasia::fill_grid(int level, DensityGrid<real_t> &R) {
fftw_real *pr0, *pr1, *pr2, *pr3, *pr4;
fftw_complex *pc0, *pc1, *pc2, *pc3, *pc4;
// determine resolution and offset so that we can do proper resampling
int ileft[3], ileft_corner[3], nx[3], nxremap[3];
int iexpand_left[3];
for (int k = 0; k < 3; ++k) {
ileft[k] = prefh_->offset_abs(level, k);
nx[k] = R.size(k);
assert(nx[k] % 4 == 0);
if (level == levelmin_) {
ileft_corner[k] = ileft[k]; // Top level - periodic
}else{
ileft_corner[k] = (ileft[k] - nx[k]/4 + (1 << level))%(1 << level); // Isolated
}
iexpand_left[k] = (ileft_corner[k]%grid_m_ ==0) ? 0 : ileft_corner[k]%grid_m_;
fprintf(stderr, "dim=%c : ileft = %d, ileft_corner %d, nx = %d\n", 'x' + k, ileft[k],ileft_corner[k],nx[k]);
};
int ileft_corner_m[3], ileft_corner_p[3],nx_m[3];
int ileft_max_expand = std::max(iexpand_left[0],std::max(iexpand_left[1],iexpand_left[2]));
for (int k = 0; k < 3; ++k) {
ileft_corner_m[k] = ((ileft_corner[k] - iexpand_left[k]) +
coordinate_system_shift_[k] * (1 << (level - levelmin_final_)) + (1 << level)) % (1 << level);
ileft_corner_p[k] = grid_p_ * ileft_corner_m[k]/grid_m_;
nx_m[k] = (ileft_max_expand!=0)? nx[k] + ileft_max_expand: nx[k];
if (nx_m[k]%grid_m_ !=0) nx_m[k] = nx_m[k] + grid_m_ - nx_m[k]%grid_m_;
nxremap[k] = grid_p_ * nx_m[k]/grid_m_;
if (nxremap[k]%2==1){
nx_m[k] = nx_m[k] + grid_m_;
nxremap[k] = grid_p_ * nx_m[k]/grid_m_;
}
}
if ( (nx_m[0]!=nx_m[1]) || (nx_m[0]!=nx_m[2])) LOGERR("Fatal error: non-cubic refinement being requested");
inter_grid_phase_adjustment_ = M_PI * (1.0 / (double)nx_m[0] - 1.0 / (double)nxremap[0]);
LOGINFO("The value of the phase adjustement is %f\n", inter_grid_phase_adjustment_);
LOGINFO("ileft[0],ileft[1],ileft[2] %d %d %d", ileft[0], ileft[1], ileft[2]);
LOGINFO("ileft_corner[0,1,2] %d %d %d", ileft_corner[0], ileft_corner[1], ileft_corner[2]);
LOGINFO("iexpand_left[1,2,3] = (%d, %d, %d) Max %d ",iexpand_left[0],iexpand_left[1],iexpand_left[2],
ileft_max_expand);
LOGINFO("ileft_corner_m[0,1,2] = (%d,%d,%d)",ileft_corner_m[0],ileft_corner_m[1],ileft_corner_m[2]);
LOGINFO("grid_m_ %d grid_p_ %d",grid_m_,grid_p_);
LOGINFO("nx_m[0,1,2] = (%d,%d,%d)",nx_m[0],nx_m[1],nx_m[2]);
LOGINFO("ileft_corner_p[0,1,2] = (%d,%d,%d)",ileft_corner_p[0],ileft_corner_p[1],ileft_corner_p[2]);
LOGINFO("nxremap[0,1,2] = (%d,%d,%d)",nxremap[0],nxremap[1],nxremap[2]);
size_t ngp = nxremap[0] * nxremap[1] * (nxremap[2] + 2);
pr0 = new fftw_real[ngp];
pr1 = new fftw_real[ngp];
pr2 = new fftw_real[ngp];
pr3 = new fftw_real[ngp];
pr4 = new fftw_real[ngp];
pc0 = reinterpret_cast<fftw_complex *>(pr0);
pc1 = reinterpret_cast<fftw_complex *>(pr1);
pc2 = reinterpret_cast<fftw_complex *>(pr2);
pc3 = reinterpret_cast<fftw_complex *>(pr3);
pc4 = reinterpret_cast<fftw_complex *>(pr4);
LOGINFO("calculating PANPHASIA random numbers for level %d...", level);
clear_panphasia_thread_states();
double t1 = get_wtime();
double tp = t1;
#pragma omp parallel
{
#ifdef _OPENMP
const int mythread = omp_get_thread_num();
#else
const int mythread = 0;
#endif
int odd_x, odd_y, odd_z;
int ng_level = ngrid_ * (1 << (level - levelmin_)); // full resolution of current level
int verbosity = (mythread == 0);
char descriptor[100];
memset(descriptor, 0, 100);
memcpy(descriptor, descriptor_string_.c_str(), descriptor_string_.size());
if (level == levelmin_) {
start_panphasia_(&lstate[mythread], descriptor, &ng_level, &verbosity);
}
{
int level_p, lextra;
long long ix_rel[3];
panphasia_descriptor d(descriptor_string_);
lextra = (log10((double)ng_level / (double)d.i_base) + 0.001) / log10(2.0);
level_p = d.wn_level_base + lextra;
int ratio = 1 << lextra;
assert(ng_level == ratio * d.i_base);
ix_rel[0] = ileft_corner_p[0];
ix_rel[1] = ileft_corner_p[1];
ix_rel[2] = ileft_corner_p[2];
// Code above ignores the coordinate_system_shift_ - but currently this is set to zero //
lstate[mythread].layer_min = 0;
lstate[mythread].layer_max = level_p;
lstate[mythread].indep_field = 1;
set_phases_and_rel_origin_(&lstate[mythread], descriptor, &level_p, &ix_rel[0], &ix_rel[1], &ix_rel[2],
&verbosity);
LOGUSER(" called set_phases_and_rel_origin level %d ix_rel iy_rel iz_rel %d %d %d\n", level_p, ix_rel[0],
ix_rel[1], ix_rel[2]);
odd_x = ix_rel[0] % 2;
odd_y = ix_rel[1] % 2;
odd_z = ix_rel[2] % 2;
}
if (verbosity)
t1 = get_wtime();
//***************************************************************
// Process Panphasia values: p000, p001, p010, p100 and indep field
//****************************************************************
// START //
#pragma omp for //nowait
for (int i = 0; i < nxremap[0] / 2 + odd_x; ++i) {
double cell_prop[9];
pan_state_ *ps = &lstate[mythread];
for (int j = 0; j < nxremap[1] / 2 + odd_y; ++j)
for (int k = 0; k < nxremap[2] / 2 + odd_z; ++k) {
// ARJ - added inner set of loops to speed up evaluation of Panphasia
for (int ix = 0; ix < 2; ++ix)